RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1990, Volume 45, Issue 4(274), Pages 17–77 (Mi umn4755)  

This article is cited in 62 scientific papers (total in 62 papers)

Breaking solitons in $2+1$-dimensional integrable equations

O. I. Bogoyavlenskii

Steklov Mathematical Institute, Russian Academy of Sciences

Full text: PDF file (3375 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1990, 45:4, 1–89

Bibliographic databases:

Document Type: Article
MSC: 37K40, 37K10, 35Q53, 37K05, 35Q51
Received: 06.03.1990

Citation: O. I. Bogoyavlenskii, “Breaking solitons in $2+1$-dimensional integrable equations”, Uspekhi Mat. Nauk, 45:4(274) (1990), 17–77; Russian Math. Surveys, 45:4 (1990), 1–89

Citation in format AMSBIB
\Bibitem{Bog90}
\by O.~I.~Bogoyavlenskii
\paper Breaking solitons in $2+1$-dimensional integrable equations
\jour Uspekhi Mat. Nauk
\yr 1990
\vol 45
\issue 4(274)
\pages 17--77
\mathnet{http://mi.mathnet.ru/umn4755}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1075386}
\zmath{https://zbmath.org/?q=an:0754.35127}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1990RuMaS..45S...1B}
\transl
\jour Russian Math. Surveys
\yr 1990
\vol 45
\issue 4
\pages 1--89
\crossref{https://doi.org/10.1070/RM1990v045n04ABEH002377}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1990FK12500001}


Linking options:
  • http://mi.mathnet.ru/eng/umn4755
  • http://mi.mathnet.ru/eng/umn/v45/i4/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. I. Bogoyavlenskii, “Breaking solitons. IV”, Math. USSR-Izv., 37:3 (1991), 475–487  mathnet  crossref  mathscinet  zmath  adsnasa
    2. D. Fofana, “An integrable system extending the Korteweg–de Vries equation”, Math. USSR-Izv., 39:3 (1992), 1239–1250  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. O. I. Bogoyavlenskii, “Breaking solitons. VI. Extension of systems of hydrodynamic type”, Math. USSR-Izv., 39:2 (1992), 959–973  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. O. I. Bogoyavlenskii, “Breaking solitons. V. Systems of hydrodynamic type”, Math. USSR-Izv., 38:3 (1992), 439–454  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    5. A. S. Piskunov, “A (3+1)-dimensional equation admitting a Lax representation”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 225–233  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    6. J. Szmigielski, “On the soliton content of the self dual Yang-Mills equations”, Physics Letters A, 183:4 (1993), 293  crossref
    7. P A Clarkson, E L Mansfield, Nonlinearity, 7:3 (1994), 975  crossref  mathscinet  zmath  adsnasa  isi
    8. Y.-sh. Li, “Two topics of the integrable soliton equation”, Theoret. and Math. Phys., 99:3 (1994), 710–717  mathnet  crossref  mathscinet  zmath  isi
    9. Andrew Pickering, “The singular manifold method revisited”, J Math Phys (N Y ), 37:4 (1996), 1894  crossref  mathscinet  zmath  isi
    10. Bo Tian, Yi-Tian Gao, “Soliton-like solutions for a (2 + 1)-dimensional generalization of the shallow water wave equations”, Chaos, Solitons & Fractals, 7:9 (1996), 1497  crossref
    11. Peter A Clarkson, Pilar R Gordoa, Andrew Pickering, Inverse Probl, 13:6 (1997), 1463  crossref  mathscinet  zmath  isi
    12. Yi-Tian Gao, Bo Tian, “Generalized tanh method with symbolic computation and generalized shallow water wave equation”, Computers & Mathematics with Applications, 33:4 (1997), 115  crossref
    13. Nicolai A Kudryashov, Andrew Pickering, J Phys A Math Gen, 31:47 (1998), 9505  crossref  mathscinet  zmath  isi
    14. M. Senthil Velan, M. Lakshmanan, “Lie Symmetries, Kac-Moody-Virasoro Algebras and Integrability of Certain (2+1)-Dimensional Nonlinear Evolution Equations”, Journal of Nonlinear Mathematical Physics, 5:2 (1998), 190  crossref
    15. Pilar R. Gordoa, Andrew Pickering, “Nonisospectral scattering problems: A key to integrable hierarchies”, J Math Phys (N Y ), 40:11 (1999), 5749  crossref  mathscinet  zmath  isi  elib
    16. Metin Gürses, Atalay Karasu, “Integrable KdV systems: Recursion operators of degree four”, Physics Letters A, 251:4 (1999), 247  crossref  elib
    17. Kouichi Toda, Yu Song-Ju, Takeshi Fukuyama, “The Bogoyavlenskii-Schiff hierarchy and integrable equations in (2 + 1) dimensions”, Reports on Mathematical Physics, 44:1-2 (1999), 247  crossref
    18. A. I. Zenchuk, “Multidimensional hierarchies of (1+1)-dimensional integrable partial differential equations. Nonsymmetric ∂̄-dressing”, J Math Phys (N Y ), 41:9 (2000), 6248  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. Pilar R. Gordoa, “Symmetries, exact solutions, and nonlinear superposition formulas for two integrable partial differential equations”, J Math Phys (N Y ), 41:7 (2000), 4713  crossref  mathscinet  zmath  isi
    20. Saburo Kakei, Yasuhiro Ohta, J Phys A Math Gen, 34:48 (2001), 10585  crossref  mathscinet  zmath  isi
    21. C Verhoeven, M Musette, J Phys A Math Gen, 34:49 (2001), L721  crossref  mathscinet  zmath  adsnasa  isi
    22. AYŞE KARASU (KALKANLI), ISMET YURDUŞEN, “PROLONGATION ALGEBRA AND Bäcklund TRANSFORMATIONS OF DrinfelD–Sokolov SYSTEM OF EQUATIONS”, Int. J. Mod. Phys. A, 16:26 (2001), 4261  crossref
    23. Pilar R. Gordoa, Juan M. Conde, “A linear algebraic nonlinear superposition formula”, Physics Letters A, 295:5-6 (2002), 287  crossref  elib
    24. C Verhoeven, M Musette, “Soliton solutions of two bidirectional sixth-order partial differential equations belonging to the KP hierarchy”, J Phys A Math Gen, 36:8 (2003), L133  crossref  mathscinet  zmath  adsnasa  isi
    25. M. Musette, C. Verhoeven, “$C$-KP and $B$-KP Equations Related to the Generalized Quartic Hénon–Heiles Hamiltonian”, Theoret. and Math. Phys., 137:2 (2003), 1561–1573  mathnet  crossref  crossref  mathscinet  zmath  isi
    26. Pilar Ruiz Gordoa, Andrew Pickering, “Non-isospectral scattering problems: Painlevé truncation for hierarchies”, Physics Letters A, 317:3-4 (2003), 223  crossref  elib
    27. C Verhoeven, “Resonant triads for two bidirectional equations in 1 + 1 dimensions”, J Phys A Math Gen, 37:44 (2004), 10625  crossref  mathscinet  zmath  adsnasa  isi  elib
    28. Xianguo Geng, Cewen Cao, “Explicit solutions of the 2+1-dimensional breaking soliton equation”, Chaos, Solitons & Fractals, 22:3 (2004), 683  crossref
    29. Zhenyun Qin, Ruguang Zhou, “A (2+1)-dimensional breaking soliton equation associated with the Kaup–Newell soliton hierarchy”, Chaos, Solitons & Fractals, 21:2 (2004), 311  crossref
    30. P G Estévez, J Prada, “A Generalization of the sine-Gordon Equation to 2 + 1 Dimensions”, Journal of Nonlinear Mathematical Physics, 11:2 (2004), 164  crossref
    31. P G Estévez, J Prada, “Hodograph transformations for a Camassa–Holm hierarchy in 2 + 1 dimensions”, J Phys A Math Gen, 38:6 (2005), 1287  crossref  mathscinet  zmath  adsnasa  isi  elib
    32. P. R. Gordoa, A. Pickering, Z. N. Zhu, “A nonisospectral extension of the Volterra hierarchy to 2+1 dimensions”, J Math Phys (N Y ), 46:10 (2005), 103509  crossref  mathscinet  zmath  adsnasa  isi
    33. P.R. Gordoa, A. Pickering, J. Prada, “Non-isospectral scattering problems and truncation for hierarchies: Burgers and dispersive water waves”, Physica A: Statistical Mechanics and its Applications, 345:1-2 (2005), 35  crossref
    34. P GORDOA, A PICKERING, J PRADA, “Non-isospectral scattering problems and truncation for hierarchies: Burgers and dispersive water waves”, Physica A: Statistical Mechanics and its Applications, 345:1-2 (2005), 35  crossref
    35. Yan-Ze Peng, Ming Shen, “On exact solutions of the Bogoyavlenskii equation”, Pramana - J Phys, 67:3 (2006), 449  crossref  isi  elib
    36. Masashi Hamanaka, “Notes on exact multi-soliton solutions of noncommutative integrable hierarchies”, J High Energy Phys, 2007:2 (2007), 094  crossref  mathscinet
    37. Su Ting, Geng Xian-Guo, Ma Yun-Ling, “Wronskian Form of N-Soliton Solution for the (2+1)-Dimensional Breaking Soliton Equation”, Chinese Phys Lett, 24:2 (2007), 305  crossref  adsnasa  isi
    38. Engui Fan, Y. Hon, “Quasiperiodic waves and asymptotic behavior for Bogoyavlenskii’s breaking soliton equation in (2+1) dimensions”, Phys Rev E, 78:3 (2008), 036607  crossref  mathscinet  isi
    39. Yuji Ogawa, “On the (2+1)-Dimensional Extension of 1-Dimensional Toda Lattice Hierarchy”, Journal of Nonlinear Mathematical Physics, 15:1 (2008), 48  crossref
    40. E V Ferapontov, A Moro, V S Novikov, “Integrable equations in 2 + 1 dimensions: deformations of dispersionless limits”, J Phys A Math Theor, 42:34 (2009), 345205  crossref  mathscinet  zmath  isi  elib
    41. Zhao Song-Lin, Zhang Da-Jun, Ji Jie, “Exact Solutions for Two Equation Hierarchies”, Chinese Phys Lett, 27:2 (2010), 020201  crossref  adsnasa  isi
    42. Wu Yong-Qi, “Bilinear Bäcklund transformation and explicit solutions for a nonlinear evolution equation”, Chinese Phys B, 19:4 (2010), 040304  crossref  isi
    43. Lü Zhuo-Sheng, Duan Li-Xia, Xie Fu-Ding, “Cross Soliton-Like Waves for the (2+1)-Dimensional Breaking Soliton Equation”, Chinese Phys Lett, 27:7 (2010), 070502  crossref
    44. Kanehisa Takasaki, “Two extensions of 1D Toda hierarchy”, J Phys A Math Theor, 43:43 (2010), 434032  crossref
    45. Yan-Ze Peng, “A New (2 + 1)-Dimensional KdV Equation and Its Localized Structures”, Commun Theor Phys, 54:5 (2010), 863  crossref
    46. Tiecheng Xia, Shouquan Xiong, “Exact solutions of (2+1) -dimensional Bogoyavlenskii’s breaking soliton equation with symbolic computation”, Computers & Mathematics with Applications, 60:3 (2010), 919  crossref
    47. Abdul-Majid Wazwaz, “Multiple soliton solutions for the Bogoyavlenskii’s generalized breaking soliton equations and its extension form”, Applied Mathematics and Computation, 217:8 (2010), 4282  crossref
    48. PARTHA GUHA, “Euler–Poincaré FLOWS ON THE LOOP BOTT–Virasoro GROUP AND SPACE OF TENSOR DENSITIES AND (2 + 1)-DIMENSIONAL INTEGRABLE SYSTEMS”, Rev. Math. Phys, 22:05 (2010), 485  crossref
    49. YUFENG ZHANG, HONWAH TAM, JIANQIN MEI, “INTEGRABLE HAMILTONIAN HIERARCHIES ASSOCIATED WITH THE EQUATION OF HEAT CONDUCTION”, Mod. Phys. Lett. B, 24:14 (2010), 1573  crossref
    50. Engui Fan, Kwok Wing Chow, “Darboux covariant Lax pairs and infinite conservation laws of the (2+1)-dimensional breaking soliton equation”, J. Math. Phys, 52:2 (2011), 023504  crossref  elib
    51. Takayuki Tsuchida, “Systematic method of generating new integrable systems via inverse Miura maps”, J. Math. Phys, 52:5 (2011), 053503  crossref
    52. Abdul-Majid Wazwaz, “A study on two extensions of the Bogoyavlenskii–Schieff equation”, Communications in Nonlinear Science and Numerical Simulation, 2011  crossref
    53. Yi Zhang, Yang Song, Li Cheng, Jian-Ya Ge, Wei-Wei Wei, “Exact solutions and Painlevé analysis of a new (2+1)-dimensional generalized KdV equation”, Nonlinear Dyn, 2011  crossref
    54. Ahmet Bekir, Ömer Ünsal, “Periodic and solitary wave solutions of coupled nonlinear wave equations using the first integral method”, Phys. Scr, 85:6 (2012), 065003  crossref
    55. Anand Malik, Fakir Chand, Hitender Kumar, S.C. Mishra, “Exact solutions of the Bogoyavlenskii equation using the multiple -expansion method”, Computers & Mathematics with Applications, 2012  crossref
    56. Yun-Hu Wang, Yong Chen, “Integrability of an extended (2+1)-dimensional shallow water wave equation with Bell polynomials”, Chinese Phys. B, 22:5 (2013), 050509  crossref
    57. P.G. Estévez, J.D. Lejarreta, C. Sardón, “Integrable dimensional hierarchies arising from reduction of a non-isospectral problem in dimensions”, Applied Mathematics and Computation, 224 (2013), 311  crossref
    58. P. G. Estévez, C. Sardón, “Miura-reciprocal transformations for non-isospectral Camassa-Holm hierarchies in 2 + 1 dimensions”, Journal of Nonlinear Mathematical Physics, 20:4 (2013), 552  crossref
    59. Dianlou Du, Xiao Yang, “Algebraic-geometrical solutions of three (2 + 1)-dimensional nonlinear equations via Hamiltonian approach manuscripts”, Int. J. Geom. Methods Mod. Phys, 2015, 1550038  crossref
    60. M.A.. E. Abdelrahman, M.H.akeem Armanious, E.H.. M. Zahran, M.M.. A. Khater, “The Modified Simple Equation Method and Its Applications in Mathematical Physics and Biology”, AJCM, 05:01 (2015), 1  crossref
    61. Yiren Chen, Rui Liu, “Some new nonlinear wave solutions for two (3+1)-dimensional equations”, Applied Mathematics and Computation, 260 (2015), 397  crossref
    62. Gui-qiong Xu, “Integrability of a (2+1)-dimensional generalized breaking soliton equation”, Applied Mathematics Letters, 2015  crossref
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:680
    Full text:174
    References:41
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019