|
This article is cited in 87 scientific papers (total in 87 papers)
Spectra of random self adjoint operators
L. A. Pastur
Abstract:
This survey contains an exposition of the results obtained in the studying the spectra of certain classes of random operators. It consists of three chapters. In the introductory Chapter I we survey some of the pioneering papers (two, in particular), which have sufficient depth of content to suggest the natural problems to be considered in this field. In Chapter II we study the distribution of the eigenvalues for ensembles of random matrices, for instance, the sum of one-dimensional projection operators onto random vectors uniformly and independently distributed over the surface of the $n$-dimensional unit sphere. We show that as $n\to\infty$, the eigenvalue distribution ceases to be random and can be determined as the solution of a certain functional equation. Chapter III deals with the Schrödinger equation with a random potential. We establish ergodic properties of certain random quantities, constructed from the eigenvalues and eigenfunctions of this equation, and we study the distribution of eigenvalues in the cases when the potential is a Gaussian random field and a homogeneous Markov process.
Full text:
PDF file (3104 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 1973, 28:1, 1–67
Bibliographic databases:
UDC:
517.4
MSC: 47B80, 47B25, 47B06, 15A52, 47B36, 81Q05 Received: 11.07.1972
Citation:
L. A. Pastur, “Spectra of random self adjoint operators”, Uspekhi Mat. Nauk, 28:1(169) (1973), 3–64; Russian Math. Surveys, 28:1 (1973), 1–67
Citation in format AMSBIB
\Bibitem{Pas73}
\by L.~A.~Pastur
\paper Spectra of random self adjoint operators
\jour Uspekhi Mat. Nauk
\yr 1973
\vol 28
\issue 1(169)
\pages 3--64
\mathnet{http://mi.mathnet.ru/umn4834}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=406251}
\zmath{https://zbmath.org/?q=an:0268.60034|0277.60049}
\transl
\jour Russian Math. Surveys
\yr 1973
\vol 28
\issue 1
\pages 1--67
\crossref{https://doi.org/10.1070/RM1973v028n01ABEH001396}
Linking options:
http://mi.mathnet.ru/eng/umn4834 http://mi.mathnet.ru/eng/umn/v28/i1/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
F. A. Berezin, “Some remarks on the wigner distribution”, Theoret. and Math. Phys., 17:3 (1973), 1163–1171
-
A. I. Gusev, “The state density and other spectral invariants of selfadjoint elliptic operators with random coefficients”, Math. USSR-Sb., 33:2 (1977), 185–202
-
A. I. Gusev, “State density of self-adjoint elliptic operators with stochastic coefficients”, Funct. Anal. Appl., 11:3 (1977), 221–223
-
B. V. Fedosov, M. A. Shubin, “The index of random elliptic operators. I”, Math. USSR-Sb., 34:5 (1978), 671–699
-
S. M. Kozlov, “Averaging of random operators”, Math. USSR-Sb., 37:2 (1980), 167–180
-
M. A. Shubin, “The spectral theory and the index of elliptic operators with almost periodic coefficients”, Russian Math. Surveys, 34:2 (1979), 109–157
-
Hervé Kunz, Bernard Souillard, “Sur le spectre des opérateurs aux différences finies aléatoires”, Comm Math Phys, 78:2 (1980), 201
-
P. E. Dedik, M. A. Shubin, “Random pseudodifferential operators and the stabilization of solutions of parabolic equations with random coefficients”, Math. USSR-Sb., 41:1 (1982), 33–52
-
T. A. Brody, J. B. French, P. A. Mello, A. Pandey, S. S. M. Wong, “Random-matrix physics: spectrum and strength fluctuations”, Rev Mod Phys, 53:3 (1981), 385
-
Werner Kirsch, Fabio Martinelli, “On the spectrum of Schrödinger operators with a random potential”, Comm Math Phys, 85:3 (1982), 329
-
J L van Hemmen, J Phys A Math Gen, 15:12 (1982), 3891
-
T Plefka, J Phys A Math Gen, 15:6 (1982), 1971
-
W Kirsch, F Martinelli, J Phys A Math Gen, 15:7 (1982), 2139
-
S. A. Molčanov, H. Seidel, “Spectral properties of the general Sturm-Liouville equation with random coefficients I”, Math Nachr, 109:1 (1982), 57
-
M. Thompson, “The state density of elliptic operators with random potentials”, Annali di Matematica, 131:1 (1982), 29
-
S. M. Kozlov, “The distribution of the eigenvalues of differential operators in large domains”, Russian Math. Surveys, 37:5 (1982), 180–181
-
Werner Kirsch, Fabio Martinelli, “Large deviations and Lifshitz singularity of the integrated density of states of random Hamiltonians”, Comm Math Phys, 89:1 (1983), 27
-
T. E. Bogorodskaya, M. A. Shubin, “A variational principle for the density of states of random pseudodifferential operators, and its applications”, Funct. Anal. Appl., 17:2 (1983), 133–134
-
S. M. Kozlov, M. A. Shubin, “On the coincidence of the spectra of random elliptic operators”, Math. USSR-Sb., 51:2 (1985), 455–471
-
Bernard Souillard, “Electrons in random and almost-periodic potentials”, Physics Reports, 103:1-4 (1984), 41
-
René Carmona, “One-dimensional Schrödinger operators with random potentials: A survey”, Acta Appl Math, 4:1 (1985), 65
-
V. L. Girko, “Spectral theory of random matrices”, Russian Math. Surveys, 40:1 (1985), 77–120
-
M. V. Novitskii, “On the recovery, from a countable collection of polynomial conservation laws, of action variables for the KdV equation in the class of almost periodic functions”, Math. USSR-Sb., 56:2 (1987), 417–428
-
W. Kirsch, “On a class of random Schrödinger operators”, Advances in Applied Mathematics, 6:2 (1985), 177
-
Ludwig Arnold, George Papanicolaou, Volker Wihstutz, “Asymptotic Analysis of the Lyapunov Exponent and Rotation Number of the Random Oscillator and Applications”, SIAM J Appl Math, 46:3 (1986), 427
-
J. Droese, W. Kirsch, “The effect of boundary conditions on the density of states for random Schrödinger operators”, Stochastic Processes and their Applications, 23:1 (1986), 169
-
F. Martinelli, E. Scoppola, “Introduction to the mathematical theory of Anderson localization”, La Rivista Del Nuovo Cimento Series 3, 10:10 (1987), 1
-
M.M. Kłosek-Dygas, B.J. Matkowsky, Z. Schuss, “A first passage time approach to stochastic stability of nonlinear oscillators”, Physics Letters A, 130:1 (1988), 11
-
Carlos R. Handy, Giorgio Mantica, J. B. Gibbons, “Quantization of lattice Schrödinger operators via the trigonometric moment problem”, Phys Rev A, 39:7 (1989), 3256
-
V. L. Girko, “Asymptotics of the distribution of the spectrum of random matrices”, Russian Math. Surveys, 44:4 (1989), 3–36
-
W. Kirsch, L. A. Pastur, “The large-time asymptotics of some Wiener integrals and the interband light absorption coefficient in the deep fluctuation spectrum”, Comm Math Phys, 132:2 (1990), 365
-
H. Englisch, W. Kirsch, M. Schröder, B. Simon, “Random Hamiltonians ergodic in all but one direction”, Comm Math Phys, 128:3 (1990), 613
-
V. L. Girko, “Limit Theorems for Maximal and Minimal Eigenvalues of Random Matrices”, Theory Probab Appl, 35:4 (1990), 680
-
Henrique Dreifus, Abel Klein, “Localization for random Schrödinger operators with correlated potentials”, Comm Math Phys, 140:1 (1991), 133
-
L. A. Pastur, “On the universality of the level spacing distribution for some ensembles of random matrices”, Lett Math Phys, 25:4 (1992), 259
-
S. A. Molchanov, L. A. Pastur, A. M. Khorunzhii, “Limiting eigenvalue distribution for band random matrices”, Theoret. and Math. Phys., 90:2 (1992), 108–118
-
A. M. Khorunzhy, L. A. Pastur, “Limits of infinite interaction radius, dimensionality and the number of components for random operators with off-diagonal randomness”, Comm Math Phys, 153:3 (1993), 605
-
V. L. Girko, “Asymptotics of eigenvalues of symmetric random matrices”, Math. Notes, 54:2 (1993), 769–779
-
V. L. Girko, “The canonical spectral equation for singular spectral functions of random matrices”, Russian Math. Surveys, 48:3 (1993), 163–179
-
Rainer Hempel, Werner Kirsch, “On the integrated density of states for crystals with randomly distributed impurities”, Comm Math Phys, 159:3 (1994), 459
-
M. A. Shubin, “Discrete Magnetic Laplacian”, Comm Math Phys, 164:2 (1994), 259
-
V. L. Girko, “Canonical Spectral Equation”, Theory Probab Appl, 39:4 (1994), 685
-
A Khorunzhy, B Khoruzhenko, L Pastur, J Phys A Math Gen, 28:1 (1995), L31
-
A. Boutet de Monvel, M. V. Shcherbina, “On the norm of random matrices”, Math. Notes, 57:5 (1995), 475–484
-
Abel Klein, “Spreading of wave packets in the Anderson model on the Bethe Lattice”, Comm Math Phys, 177:3 (1996), 755
-
Ya. G. Sinai, A. B. Soshnikov, “A Refinement of Wigner's Semicircle Law in a Neighborhood of the Spectrum Edge for Random Symmetric Matrices”, Funct. Anal. Appl., 32:2 (1998), 114–131
-
Abel Klein, “Extended States in the Anderson Model on the Bethe Lattice”, Advances in Mathematics, 133:1 (1998), 163
-
Martin Rehker, Reinhold Oppermann, J Phys Condens Matter, 11:6 (1999), 1537
-
T Plefka, “Dynamic linear response of the SK spin glass coupled microscopically to a bath”, J Phys A Math Gen, 35:41 (2002), 8691
-
T Plefka, “Modified TAP equations for the SK spin glass”, Europhys Lett, 58:6 (2002), 892
-
T. Plefka, “Modified Thouless-Anderson-Palmer equations for the Sherrington-Kirkpatrick spin glass: Numerical solutions”, Phys Rev B, 65:22 (2002), 224206
-
V. L. Girko, “Thirty years of the Central Resolvent Law and three laws on the 1/n expansion for resolvent of random matrices”, rand oper stoch equ, 11:2 (2003), 167
-
A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, “Complexity in the Sherrington-Kirkpatrick model in the annealed approximation”, Phys Rev B, 68:17 (2003), 174401
-
P. Šeba, “Random Matrix Analysis of Human EEG Data”, Phys Rev Letters, 91:19 (2003), 198104
-
J. C. Flores, “Classical limit for electronic disordered systems: spectral tails and thermodynamical properties”, phys stat sol (b), 239:1 (2003), 168
-
F. Gotze, A. N. Tikhomirov, “Rate of Convergence to the Semicircular Law for the Gaussian Unitary Ensemble”, Theory Probab. Appl, 47:2 (2003), 323
-
V. L. Girko, “The Strong Circular Law. Twenty years later. Part I”, rand oper stoch equ, 12:1 (2004), 49
-
V. L. Girko, “The Strong Circular Law. Twenty years later. Part II”, rand oper stoch equ, 12:3 (2004), 255
-
J. Math. Sci. (N. Y.), 133:3 (2006), 1257–1276
-
T. Aspelmeier, A. J. Bray, M. A. Moore, “Complexity of Ising Spin Glasses”, Phys Rev Letters, 92:8 (2004), 087203
-
V. L. Girko, “The Circular Law. Twenty years later. Part III”, rand oper stoch equ, 13:1 (2005), 53
-
V. L. Girko, “Thirty years of the ACE-Law and Stochastic Power Method”, rand oper stoch equ, 13:2 (2005), 153
-
Theory Probab. Appl., 51:1 (2007), 42–64
-
Peter D. Hislop, Olivier Lenoble, “Basic properties of the current-current correlation measure for random Schrödinger operators”, J Math Phys (N Y ), 47:11 (2006), 112106
-
V. Janiš, “Incompleteness of the Thouless, Anderson, and Palmer mean-field description of the spin-glass phase”, Phys Rev B, 74:5 (2006), 054207
-
Friedrich Götze, Alexander N. Tikhomirov, Dmitry A. Timushev, “Rate of convergence to the semi-circle law for the Deformed Gaussian Unitary Ensemble”, centr eur j math, 5:2 (2007), 305
-
Abel Klein, Peter Müller, “The conductivity measure for the Anderson model”, Zhurn. matem. fiz., anal., geom., 4:1 (2008), 128–150
-
Hislop P.D., “Lectures on Random Schrodinger Operators”, Fourth Summer School in Analysis and Mathematical Physics: Topic in Spectral Theory and Quantum Mechanics, Contemporary Mathematics Series, 476, 2008, 41–131
-
Z. Burda, J. Duda, J. M. Luck, B. Waclaw, “Localization of the Maximal Entropy Random Walk”, Phys Rev Letters, 102:16 (2009), 160602
-
S. Suwanna, “Finite Trotter Approximation to the Averaged Mean Square Distance in the Anderson Model”, J Statist Phys, 2009
-
A. N. Tikhomirov, “The rate of convergence of the expected spectral distribution function of a sample covariance matrix to the Marchenko-Pastur distribution”, Sib Adv Math, 19:4 (2009), 277
-
Theory Probab. Appl., 54:1 (2010), 129–140
-
J. Math. Sci. (N. Y.), 163:4 (2010), 328–351
-
S. Ayadi, “Semicircle law for random matrices of long-range percolation model”, Random Operators and Stochastic Equations, 17:1 (2009), 1
-
Terence Tao, Van Vu, “Random Matrices: the Distribution of the Smallest Singular Values”, GAFA Geom funct anal, 2010
-
Jean-Michel Combes, Francois Germinet, Peter D Hislop, “Conductivity and the current–current correlation measure”, J Phys A Math Theor, 43:47 (2010), 474010
-
Bobkov S.G., Goetze F., Tikhomirov A.N., “On Concentration of Empirical Measures and Convergence to the Semi-Circle Law”, J. Theor. Probab., 23:3 (2010), 792–823
-
Abel Klein, Christian Sadel, “Absolutely continuous spectrum for random Schrödinger operators on the Bethe strip”, Math. Nachr, 2011, n/a
-
V. B. Moscatelli, M. Thompson, “Estimates for the state density for ordinary differential operators with white Gaussian noise potential”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 95:3-4 (2011), 263
-
Tao T., Vu V., “Random Covariance Matrices: Universality of Local Statistics of Eigenvalues”, Ann. Probab., 40:3 (2012), 1285–1315
-
A. A. Naumov, “Limit theorems for two classes of random matrices with Gaussian elements”, J. Math. Sci. (N. Y.), 204:1 (2015), 140–147
-
F. Götze, A. A. Naumov, A. N. Tikhomirov, “Limit theorems for two classes of random matrices with dependent entries”, Theory Probab. Appl., 59:1 (2015), 23–39
-
Shen Zh., “An Improved Combes-Thomas Estimate of Magnetic Schrodinger Operators”, Ark. Mat., 52:2 (2014), 383–414
-
Meg Walters, Shannon Starr, “A note on mixed matrix moments for the complex Ginibre ensemble”, J. Math. Phys, 56:1 (2015), 013301
-
Winfried Hochstättler, Werner Kirsch, Simone Warzel, “Semicircle Law for a Matrix Ensemble with Dependent Entries”, J Theor Probab, 2015
-
F. Götze, A. A. Naumov, A. N. Tikhomirov, “Local semicircle law under moment conditions: Stieltjes transform, rigidity and delocalization”, Theory Probab. Appl., 62:1 (2018), 58–83
-
Sasha Sodin, “Fluctuations of interlacing sequences”, Zhurn. matem. fiz., anal., geom., 13:4 (2017), 364–401
|
Number of views: |
This page: | 951 | Full text: | 339 | References: | 48 | First page: | 1 |
|