|
This article is cited in 11 scientific papers (total in 11 papers)
Quantization and unitary representations
B. Kostant
Full text:
PDF file (3482 kB)
References:
PDF file
HTML file
Bibliographic databases:
UDC:
519.4
Citation:
B. Kostant, “Quantization and unitary representations”, Uspekhi Mat. Nauk, 28:1(169) (1973), 163–225
Citation in format AMSBIB
\Bibitem{Kos73}
\by B.~Kostant
\paper Quantization and unitary representations
\jour Uspekhi Mat. Nauk
\yr 1973
\vol 28
\issue 1(169)
\pages 163--225
\mathnet{http://mi.mathnet.ru/umn4837}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=385022}
\zmath{https://zbmath.org/?q=an:0249.53016}
Linking options:
http://mi.mathnet.ru/eng/umn4837 http://mi.mathnet.ru/eng/umn/v28/i1/p163
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
F. A. Berezin, “Quantization”, Math. USSR-Izv., 8:5 (1974), 1109–1165
-
A. M. Vinogradov, I. S. Krasil'shchik, “What is the hamiltonian formalism?”, Russian Math. Surveys, 30:1 (1975), 177–202
-
I. M. Shchepochkina, “Representations of solvable Lie groups”, Funct. Anal. Appl., 11:2 (1977), 159–161
-
R. S. Ismagilov, “A central extension of the group of volume-preserving diffeomorphisms, as inductive limit of groups of diffeomorphisms of coordinate neighborhoods”, Funct. Anal. Appl., 13:4 (1979), 294–295
-
V. P. Maslov, V. E. Nazaikinskii, “Asymptotics for equations with singularities in the characteristics”, Math. USSR-Izv., 19:2 (1982), 315–347
-
V. A. Ginzburg, “Method of orbits in the representation theory of complex Lie groups”, Funct. Anal. Appl., 15:1 (1981), 18–28
-
M. I. Golenishcheva-Kutuzova, “Irreducible unitary representations of the group $\operatorname{Diff}(S^2,\omega)$ of functional dimension two”, Funct. Anal. Appl., 25:3 (1991), 232–234
-
G. E. Arutyunov, “Representations of the compact quantum group $SU_q(2)$ and geometrical quantization”, Theoret. and Math. Phys., 100:2 (1994), 921–927
-
D. I. Efimov, “The magnetic geodesic flow on a homogeneous symplectic manifold”, Siberian Math. J., 46:1 (2005), 83–93
-
M. V. Karasev, E. M. Novikova, “Algebra and quantum geometry of multifrequency resonance”, Izv. Math., 74:6 (2010), 1155–1204
-
D. B. Zotev, “Predkvantovanie po Kostantu simplekticheskikh mnogoobrazii
s kontaktnymi osobennostyami”, Matem. zametki, 105:6 (2019), 857–878
|
Number of views: |
This page: | 909 | Full text: | 628 | References: | 72 | First page: | 1 |
|