General information
Latest issue
Impact factor
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Uspekhi Mat. Nauk:

Personal entry:
Save password
Forgotten password?

Uspekhi Mat. Nauk, 1973, Volume 28, Issue 3(171), Pages 43–82 (Mi umn4889)  

This article is cited in 24 scientific papers (total in 25 papers)

The spectrum of a family of operators in the theory of elasticity

S. G. Mikhlin

Abstract: The vector equation of the static theory of elasticity for a homogeneous isotropic medium is
\begin{equation} \label{1} \Delta u+\operatorname{grad}\operatorname{div}u=F(x), \end{equation}
where $\omega(1-2\sigma)^{-1}$, and $\sigma$ is Poisson's constant, $\omega$ being treated as a spectral parameter. This is then the problem: to examine the spectrum of the family of operators on the left-hand side of (1) for boundary conditions of first or second kind. The problem was first posed at the end of the 19th century by Eugéne and Franois Cosserat; it has been investigated in recent years by V. G. Maz'ya and the present author. The main results obtained are for an elastic domain $\Omega$, which may be finite, or infinite with a sufficiently smooth finite boundary. In the case of the first boundary-value problem the family operators of the theory of elasticity has a countable system of eigenvectors, orthogonal in the metric of the Dirichlet integral; this system is complete in each of the spaces $\overset{\circ}W_2^{(1)}(\Omega)$ and $Ł_2(\Omega)$. The eigenvalues condense at the three points $\omega=-1,-2,\infty;$ $\omega=-1$ and $\omega=\infty$ are isolated eigenvalues of infinite multiplicity. Similar results are obtained also, for the second boundary-value problem. The essential difference lies in the fact that in this case the eigenvalues have one further condensation point $\omega=0$, and examples show that $\omega=-2$ need not be a point of condensation for eigenvalues of the second problem.

Full text: PDF file (2205 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1973, 28:3, 45–88

Bibliographic databases:

UDC: 517.9:539.3
MSC: 74Bxx, 35J55, 35P05, 35A05
Received: 26.01.1973

Citation: S. G. Mikhlin, “The spectrum of a family of operators in the theory of elasticity”, Uspekhi Mat. Nauk, 28:3(171) (1973), 43–82; Russian Math. Surveys, 28:3 (1973), 45–88

Citation in format AMSBIB
\by S.~G.~Mikhlin
\paper The spectrum of a~family of operators in the theory of elasticity
\jour Uspekhi Mat. Nauk
\yr 1973
\vol 28
\issue 3(171)
\pages 43--82
\jour Russian Math. Surveys
\yr 1973
\vol 28
\issue 3
\pages 45--88

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. V. Kantorovich, A. I. Koshelev, O. A. Oleinik, S. L. Sobolev, “Solomon Grigor'evich Mikhlin (on his seventieth birthday)”, Russian Math. Surveys, 33:2 (1978), 209–213  mathnet  crossref  mathscinet  zmath
    2. Rouben Rostamian, “Internal constraints in linear elasticity”, J Elast, 11:1 (1981), 11  crossref  mathscinet  zmath  isi
    3. G. Geymonat, M. Lobo-Hidalgo, E. Sanchez-Palencia, G. F. Roach, “Spectral properties of certain stiff problems in elasticity and acoustics”, Math Meth Appl Sci, 4:1 (1982), 291  crossref  mathscinet  zmath
    4. Henry C. Simpson, Scott J. Spector, “On the positivity of the second variation in finite elasticity”, Arch Rational Mech Anal, 98:1 (1987), 1  crossref  mathscinet  zmath  isi
    5. C. O. Horgan, “Korn’s Inequalities and Their Applications in Continuum Mechanics”, SIAM Rev, 37:4 (1995), 491  crossref  mathscinet  zmath  isi
    6. Evgueni E. Ovtchinnikov, Leonidas S. Xanthis, “A new Korn's type inequality for thin domains and its application to iterative methods”, Computer Methods in Applied Mechanics and Engineering, 138:1-4 (1996), 299  crossref  elib
    7. M. A. Ol'shanskii, “On the Stokes problem with model boundary conditions”, Sb. Math., 188:4 (1997), 603–620  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. George n. Makrakis, “Asymptotic study of the elastic seadbed effects in ocean acoustics”, Applicable Analysis, 66:3-4 (1997), 357  crossref
    9. Evgueni Eduardovich Ovtchinnikov, Leonidas Spyridon Xanthis, “A new Korn's type inequality for thin elastic structures”, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 324:5 (1997), 577  crossref
    10. Wensen Liu, X. Markenscoff, M. Paukshto, “The Cosserat Spectrum Theory in Thermoelasticity and Application to the Problem of Heat Flow Past a Rigid Spherical Inclusion”, J Appl Mech, 65:3 (1998), 614  crossref  isi  elib
    11. Xanthippi Markenscoff, Wensen Liu, Michael Paukshto, “Application of the cosserat spectrum theory to viscoelasticity”, Journal of the Mechanics and Physics of Solids, 46:10 (1998), 1969  crossref  elib
    12. W. Liu, A. Plotkin, “Application of the Cosserat Spectrum Theory to Stokes Flow”, J Appl Mech, 66:3 (1999), 811  crossref  isi  elib
    13. Barna Szabó, György Királyfalvi, “Linear models of buckling and stress-stiffening”, Computer Methods in Applied Mechanics and Engineering, 171:1-2 (1999), 43  crossref  elib
    14. M. A. Ol'shanskii, E. V. Chizhonkov, “On the best constant in the inf-sup condition for elongated rectangular domains”, Math. Notes, 67:3 (2000), 325–332  mathnet  crossref  crossref  mathscinet  zmath  isi
    15. Alexander Kozhevnikov, “On a Lower Bound of the Cosserat Spectrum for the Second Boundary Value Problem of Elastostatics”, Applicable Analysis, 74:3-4 (2000), 301  crossref
    16. N. S. Bakhvalov, A. V. Knyazev, R. R. Parashkevov, “Extension theorems for Stokes and Lamé equations for nearly incompressible media and their applications to numerical solution of problems with highly discontinuous coefficients”, Numer Linear Algebra Appl, 9:2 (2002), 115  crossref  mathscinet  zmath  isi  elib
    17. Emil Ernst, “On the Existence of Positive Eigenvalues for the Isotropic Linear Elasticity System with Negative Shear Modulus”, Communications in Partial Differential Equations, 29:11-12 (2005), 1745  crossref
    18. Manfred Dobrowolski, “On the LBB condition in the numerical analysis of the Stokes equations”, Applied Numerical Mathematics, 54:3-4 (2005), 314  crossref
    19. Christian G. Simader, Wolf von Wahl, “Introduction to the Cosserat problem”, Analysis, 26:1 (2006), 1  crossref  mathscinet
    20. E. V. Chizhonkov, “Numerical solution to a stokes interface problem”, Comput. Math. Math. Phys., 49:1 (2009), 105–116  mathnet  crossref  mathscinet  isi  elib  elib
    21. Erofeev V.I., “Bratya Kossera i mekhanika obobschennykh kontinuumov”, Vychislitelnaya mekhanika sploshnykh sred, 2:4 (2009), 5–10  elib
    22. Martin Sprengel, “Domain robust preconditioning for a staggered grid discretization of the Stokes equations”, Journal of Computational and Applied Mathematics, 2013  crossref
    23. Costabel M., Crouzeix M., Dauge M., Lafranche Y., “The Inf-Sup Constant For the Divergence on Corner Domains”, Numer. Meth. Part Differ. Equ., 31:2, SI (2015), 439–458  crossref  isi
    24. D. A. Zakora, “Model szhimaemoi zhidkosti Oldroita”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 61, RUDN, M., 2016, 41–66  mathnet
    25. D. A. Zakora, “Model szhimaemoi zhidkosti Maksvella”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 63, no. 2, Rossiiskii universitet druzhby narodov, M., 2017, 247–265  mathnet  crossref  mathscinet
  •   Russian Mathematical Surveys
    Number of views:
    This page:593
    Full text:186
    First page:1

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019