RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1972, Volume 27, Issue 1(163), Pages 81–146 (Mi umn5007)  

This article is cited in 66 scientific papers (total in 66 papers)

Limit-compact and condensing operators

B. N. Sadovskii


Abstract: The paper contains a survey of investigations concerned with three new concepts: limit-compact operators, measures of non-compactness, and condensing operators. A measure of non-compactness is a function of a set that is invariant under the transition to the closed convex hull of the set. If a certain measure of non-compactness is defined in a space, a condensing operator is defined, roughly speaking, as an operator that decreases the measure of non-compactness of any set whose closure is not compact. The more general concept of a limit-compact operator is defined by means of a property common to all condensing operators; it can be formulated in terms not related to measures of non-compactness. The theory of limit-compact operators can be regarded as a simultaneous generalization of the theory of completely continuous and contracting operators. For non-linear operators the main result is the construction of the theory of the rotation of limit-compact vector fields and, in particular, the proof of a number of new fixed-point principles (Chapter 3 of the present paper). In the theory of linear operators a number of results are obtained that are related to the concept of a Fredholm operator and the Fredholm spectrum of an operator (Chapter 2). The theory of measures of non-compactness and condensing operators has found different applications in general topology, in the theory of ordinary differential equations, functional-differential equations, partial differential equations, the theory of extrema of functionals, etc. The paper contains several examples concerning differential equations in a Banach space and functional-differential equations of neutral type. These examples do not have a special significance but are chosen merely to illustrate the methods. They are therefore investigated with neither maximal generality nor completeness.

Full text: PDF file (4010 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1972, 27:1, 85–155

Bibliographic databases:

UDC: 517.43
MSC: 46A50, 54D45, 46A03, 47A53

Citation: B. N. Sadovskii, “Limit-compact and condensing operators”, Uspekhi Mat. Nauk, 27:1(163) (1972), 81–146; Russian Math. Surveys, 27:1 (1972), 85–155

Citation in format AMSBIB
\Bibitem{Sad72}
\by B.~N.~Sadovskii
\paper Limit-compact and condensing operators
\jour Uspekhi Mat. Nauk
\yr 1972
\vol 27
\issue 1(163)
\pages 81--146
\mathnet{http://mi.mathnet.ru/umn5007}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=428132}
\zmath{https://zbmath.org/?q=an:0232.47067|0243.47033}
\transl
\jour Russian Math. Surveys
\yr 1972
\vol 27
\issue 1
\pages 85--155
\crossref{https://doi.org/10.1070/RM1972v027n01ABEH001364}


Linking options:
  • http://mi.mathnet.ru/eng/umn5007
  • http://mi.mathnet.ru/eng/umn/v27/i1/p81

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Orlando Lopes, “Periodic solutions of perturbed neutral differential equations”, Journal of Differential Equations, 15:1 (1974), 70  crossref
    2. V. G. Kurbatov, “Bounds of the spectral radii of retarding operators in the space of continuous and bounded functions on the real line”, Funct. Anal. Appl., 9:3 (1975), 227–231  mathnet  crossref  mathscinet  zmath
    3. V. I. Opoitsev, “A converse to the principle of contracting maps”, Russian Math. Surveys, 31:4 (1976), 175–204  mathnet  crossref  mathscinet  zmath
    4. D. E. Edmunds, J. R. L. Webb, “Some generalizations of the Borsuk–Ulam theorem”, Math Proc Camb Phil Soc, 82:1 (1977), 119  crossref  mathscinet  zmath
    5. Yu. G. Borisovich, V. G. Zvyagin, Yu. I. Sapronov, “Non-linear Fredholm maps and the Leray–Schauder theory”, Russian Math. Surveys, 32:4 (1977), 1–54  mathnet  crossref  mathscinet  zmath
    6. A. M. Krasnoselskii, “Zamechaniya o nepodvizhnykh tochkakh monotonnykh operatorov”, UMN, 32:6(198) (1977), 257–258  mathnet  mathscinet  zmath
    7. J.F. Toland, “Global bifurcation theory via Galerkin's method”, Nonlinear Analysis: Theory, Methods & Applications, 1:3 (1977), 305  crossref
    8. Harald Mönch, Gerd -Friedrich Harten, “The product formula for the topological degree of strict γ-contractions”, manuscripta math, 23:2 (1978), 113  crossref  mathscinet
    9. R. Schöneberg, “A note on connection properties of fixed point sets of nonexpansive mappings”, Math Nachr, 83:1 (1978), 247  crossref  mathscinet  zmath
    10. G. R. Belitskii, “Equivalence and normal forms of germs of smooth mappings”, Russian Math. Surveys, 33:1 (1978), 107–177  mathnet  crossref  mathscinet  zmath
    11. Yu. G. Borisovich, “Topology and non-linear functional analysis”, Russian Math. Surveys, 34:6 (1979), 14–23  mathnet  crossref  mathscinet  zmath
    12. E. Tarafdar, Suat Khoh Teo, “On the existence of sulutions of the equation Lx ∞ Nx and a coincidence degree theory”, J Austral Math Soc, 28:2 (1979), 139  crossref  mathscinet  zmath
    13. Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis, V. V. Obukhovskii, “Topological methods in the fixed-point theory of multi-valued maps”, Russian Math. Surveys, 35:1 (1980), 65–143  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    14. J. R. L. Webb, “On the homotopy property of degree for multivalued noncompact maps”, Glasgow Math J, 21:2 (1980), 125  crossref  mathscinet  zmath
    15. J. R. L. Webb, “On the homotopy property of degree for multivalued noncompact maps”, Glasgow Math J, 21:1 (1980), 125  crossref
    16. Harald Mönch, “Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces”, Nonlinear Analysis: Theory, Methods & Applications, 4:5 (1980), 985  crossref
    17. David E. Edmunds, Hans Triebel, “Entropy Numbers for Non-Compact Self-Adjoint Operators in HILBERT Spaces”, Math Nachr, 100:1 (1981), 213  crossref  mathscinet  zmath  isi
    18. Duong Minh Duc, “Differential calculus in Fréchet spaces”, Bull Austral Math Soc, 24:1 (1981), 93  crossref  mathscinet  zmath  isi
    19. Hans-Peter Heinz, “Theorems of ascoli type involving measures of noncompactness”, Nonlinear Analysis: Theory, Methods & Applications, 5:3 (1981), 277  crossref
    20. J.R.L. Webb, “Existence theorems for sums of K-ball contractions and accretive operators via A-proper mappings”, Nonlinear Analysis: Theory, Methods & Applications, 5:8 (1981), 891  crossref
    21. Jürgen Appell, “Implicit functions, nonlinear integral equations, and the measure of noncompactness of the superposition operator”, Journal of Mathematical Analysis and Applications, 83:1 (1981), 251  crossref
    22. Harald Mönch, Gerd-Friedrich Harten, “On the Cauchy problem for ordinary differential equations in Banach spaces”, Arch Math, 39:2 (1982), 153  crossref  mathscinet  zmath  isi
    23. A. A. Tolstonogov, “On the structure of the solution set for differential inclusions in a Banach space”, Math. USSR-Sb., 46:1 (1983), 1–15  mathnet  crossref  mathscinet  zmath
    24. K. -H. Förster, E. -O. Liebetrau, “Semi-Fredholm operators and sequence conditions”, manuscripta math, 44:1-3 (1983), 35  crossref  mathscinet  isi
    25. Vasile I. Istrăţescu, “Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters, II”, Annali di Matematica, 134:1 (1983), 327  crossref  mathscinet  zmath  isi
    26. Duong Minh Duc, “Analytic contractive vector fields in Fréchet spaces”, Bull Austral Math Soc, 27:2 (1983), 165  crossref  mathscinet  zmath  isi
    27. Hans-Peter Heinz, “On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions”, Nonlinear Analysis: Theory, Methods & Applications, 7:12 (1983), 1351  crossref
    28. Duong Minh Duc, “Measure of Noncompactness and Spectral Theory”, Math Nachr, 115:1 (1984), 305  crossref  mathscinet  zmath  isi
    29. E. É. Pasika, “Solvability conditions for the first-order Cauchy problem in a Banach space”, Funct. Anal. Appl., 18:2 (1984), 146–148  mathnet  crossref  mathscinet  zmath  isi
    30. Stanisław Szufla, “Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces”, Nonlinear Analysis: Theory, Methods & Applications, 8:12 (1984), 1481  crossref
    31. V. G. Kurbatov, “Invertibility of almost-periodic operators”, Funct. Anal. Appl., 19:3 (1985), 223–224  mathnet  crossref  mathscinet  zmath  isi
    32. Ernst Albrecht, Florian-Horia Vasilescu, “Stability of the index of a semi-Fredholm complex of Banach spaces”, Journal of Functional Analysis, 66:2 (1986), 141  crossref
    33. J.R.L. Webb, “Topological degree and A-proper operators”, Linear Algebra and its Applications, 84 (1986), 227  crossref
    34. D. Somasundaram, K. Balachandran, “Existence of optimal control for nonlinear systems with quadratic performance”, J Aust Math Soc Series B Appl Math, 29:2 (1987), 249  crossref  mathscinet  zmath  isi
    35. Stanislaw Szufla, “On the Kneser-Hukuhara property for integral equations in locally convex spaces”, Bull Austral Math Soc, 36:3 (1987), 353  crossref  mathscinet  zmath  isi
    36. A. S. Matveev, “Optimal control problems with delays of general form and with phase constraints”, Math. USSR-Izv., 33:3 (1989), 521–552  mathnet  crossref  mathscinet  zmath
    37. V. G. Kurbatov, “On the invertibility of almost periodic operators”, Math. USSR-Sb., 67:2 (1990), 367–377  mathnet  crossref  mathscinet  zmath  isi
    38. Krishnan Balachandran, “Existence of optimal control for non-linear multiple-delay systems”, International Journal of Control, 49:3 (1989), 769  crossref
    39. KRISHNAN BALACHANDRAN, “Controllability of non-linear delay systems with an implicit derivative”, International Journal of Control, 50:4 (1989), 1525  crossref
    40. M.F. Janowitz, B. Schweizer, “Ordinal and percentile clustering”, Mathematical Social Sciences, 18:2 (1989), 135  crossref
    41. Jacek Polewczak, “Ordinary differential equations on closed subsets of locally convex spaces with applications to fixed point theorems”, Journal of Mathematical Analysis and Applications, 151:1 (1990), 208  crossref
    42. F. Andreu, V. Caselles, J. Martinez, J.M. Mazon, “The essential spectrum of AM-compact operators”, Indagationes Mathematicae, 2:2 (1991), 149  crossref
    43. J. Appell, A.M. Krasnosel'skij, “New theorems on asymptotic bifurcation points”, Nonlinear Analysis: Theory, Methods & Applications, 18:3 (1992), 269  crossref
    44. J. P. Dauer, K. Balachandran, “Existence of optimal control for non-linear systems with an implicit derivative”, Optim Control Appl Meth, 14:2 (1993), 145  crossref  mathscinet  zmath  isi
    45. K. Balachandran, P. Balasubramaniam, “Controllability of nonlinear neutral Volterra integrodifferential systems”, J Aust Math Soc Series B Appl Math, 36:1 (1994), 107  crossref  mathscinet  zmath  isi
    46. S. G. Lobanov, O. G. Smolyanov, “Ordinary differential equations in locally convex spaces”, Russian Math. Surveys, 49:3 (1994), 97–175  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    47. Marina Ghisi, “Mild solutions of evolution equations and measures of noncompactness”, Nonlinear Analysis: Theory, Methods & Applications, 26:7 (1996), 1193  crossref
    48. Borisovich, YG, “A generalized degree of multivalued mappings and its applications to nonlinear problems”, Nonlinear Analysis-Theory Methods & Applications, 30:1 (1997), 101  crossref  mathscinet  zmath  isi  elib
    49. Jürgen Appell, “Some spectral theory for nonlinear operators”, Nonlinear Analysis: Theory, Methods & Applications, 30:5 (1997), 3135  crossref
    50. Nina A. Yerzakova, “On measures of non-compactness and applications to embeddings”, Nonlinear Analysis: Theory, Methods & Applications, 30:1 (1997), 535  crossref
    51. A.A Al-Nayef, P.E Kloeden, A.V Pokrovskii, “Semi-Hyperbolic Mappings, Condensing Operators, and Neutral Delay Equations”, Journal of Differential Equations, 137:2 (1997), 320  crossref
    52. Jürgen Appell, Michael Dörfner, “Some spectral theory for nonlinear operators”, Nonlinear Analysis: Theory, Methods & Applications, 28:12 (1997), 1955  crossref
    53. Russian Math. (Iz. VUZ), 42:5 (1998), 17–21  mathnet  mathscinet  elib
    54. Naseer Shahzad, Liaqat Ali Khan, “Random Fixed Points of 1-Set Contractive Random Maps in Frechet Spaces”, Journal of Mathematical Analysis and Applications, 231:1 (1999), 68  crossref
    55. Anwar A. Al—nayef, “Bi—shadowing of Infinite Trajectories for Difference Equations in Banach Spaces”, Journal of Difference Equations and Applications, 7:4 (2001), 577  crossref
    56. Liaqat Ali Khan, “Random fixed point theorems for composites of acyclic multifunctions”, Stochastic Analysis and Applications, 19:6 (2001), 925  crossref
    57. Jan Andres, Ralf Bader, “Asymptotic boundary value problems in Banach spaces”, Journal of Mathematical Analysis and Applications, 274:1 (2002), 437  crossref
    58. G. Isac, S.Z. Németh, “Scalar derivatives and scalar asymptotic derivatives. An Altman type fixed point theorem on convex cones and some applications”, Journal of Mathematical Analysis and Applications, 290:2 (2004), 452  crossref
    59. Dariusz Bugajewski, G.M.. N'Guérékata, “Almost periodicity in Fréchet spaces”, Journal of Mathematical Analysis and Applications, 299:2 (2004), 534  crossref
    60. D. Cheban, C. Mammana, “Absolute Asymptotic Stability of Discrete Linear Inclusions”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2005, no. 1, 43–68  mathnet  mathscinet  zmath
    61. G. Isac, S.Z. Németh, “Fixed points and positive eigenvalues for nonlinear operators”, Journal of Mathematical Analysis and Applications, 314:2 (2006), 500  crossref
    62. Aldona Dutkiewicz, “On the functional-integral equation of Volterra type with weakly singular kernel”, Publ. Inst. Math. (Belgr.), 83:97 (2008), 57  crossref
    63. Leszek Olszowy, “Existence of mild solutions for semilinear differential equations with nonlocal and impulsive conditions”, centr.eur.j.math, 2014  crossref
    64. Cheban D., “Belitskii-Lyubich Conjecture For C-Analytic Dynamical Systems”, Discrete Contin. Dyn. Syst.-Ser. B, 20:3, SI (2015), 945–959  crossref  isi
    65. Jinjun Fan, Xiaodi Li, Haydar Akca, “Existence of Extremal Solutions of Differential Equations with Delay in Banach Spaces”, IJAPM, 5:2 (2015), 115  crossref
    66. A. V. Zvyagin, “Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a viscoelastic medium”, Russian Math. Surveys, 74:3 (2019), 549–551  mathnet  crossref  crossref  adsnasa  isi  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:1812
    Full text:426
    References:58
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020