RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1971, Volume 26, Issue 6(162), Pages 151–212 (Mi umn5279)  

This article is cited in 6 scientific papers (total in 6 papers)

Asymptotic behaviour of the spectral function of an elliptic equat

B. M. Levitan


Abstract: In this paper we consider the asymptotic behaviour of the spectral function of an elliptic differential (pseudodifferential) equation or system of equations.
For the case of differential operators this problem has been widely studied, and various methods have been developed for its solution (see [1] and [2] for a urvey of these methods).
We consider in this paper just one of these methods. It is based on a study of the structure of the fundamental solution of the Cauchy problem for a hyperbolic differential (pseudodifferential) equation. The method we use is called “the method of geometrical optics”. For a system of first order differential equations it was originally developed in detail by Lax [8], and for pseudodifferential equations by Hörmander [2] and independently by Eskin [17], [18] and Maslov [19].
In [2] Hörmander also investigates the asymptotic behaviour of the spectral function for an elliptic pseudodifferential first order operator. Using some important results of Seeley [5] one can then derive the asymptotic behaviour of the spectral function of an elliptic differential operator of arbitrary order.
Similar methods have previously been applied by the author in [3], [4] for second order elliptic differential operators.
In this article we give a partial account of the results of [8] and [9]. We also present some new results due to the author, concerning both the structure of the fundamental solution of the Cauchy problem and the asymptotic behaviour of the spectral function.

Full text: PDF file (4905 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1971, 26:6, 165–232

Bibliographic databases:

UDC: 517.5+517.9
MSC: 35B40, 35J45, 35J15, 35P05, 35Sxx, 35A08
Received: 09.04.1971

Citation: B. M. Levitan, “Asymptotic behaviour of the spectral function of an elliptic equat”, Uspekhi Mat. Nauk, 26:6(162) (1971), 151–212; Russian Math. Surveys, 26:6 (1971), 165–232

Citation in format AMSBIB
\Bibitem{Lev71}
\by B.~M.~Levitan
\paper Asymptotic behaviour of the spectral function of an elliptic equat
\jour Uspekhi Mat. Nauk
\yr 1971
\vol 26
\issue 6(162)
\pages 151--212
\mathnet{http://mi.mathnet.ru/umn5279}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=402297}
\zmath{https://zbmath.org/?q=an:0236.35035}
\transl
\jour Russian Math. Surveys
\yr 1971
\vol 26
\issue 6
\pages 165--232
\crossref{https://doi.org/10.1070/RM1971v026n06ABEH001274}


Linking options:
  • http://mi.mathnet.ru/eng/umn5279
  • http://mi.mathnet.ru/eng/umn/v26/i6/p151

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. A. Suvorchenkova, “O reshenii zadachi Koshi dlya lineinogo differentsialnogo uravneniya pervogo poryadka s operatornymi koeffitsientami”, UMN, 31:1(187) (1976), 263–264  mathnet  mathscinet  zmath
    2. V. Ya. Ivrii, “Accurate spectral asymptotics for elliptic operators that act in vector bundles”, Funct. Anal. Appl., 16:2 (1982), 101–108  mathnet  crossref  mathscinet  zmath  isi
    3. B. S. Pavlov, “The theory of extensions and explicitly-soluble models”, Russian Math. Surveys, 42:6 (1987), 127–168  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. Yu. G. Safarov, “Exact asymptotics of the spectrum of a boundary value problem, and periodic billiards”, Math. USSR-Izv., 33:3 (1989), 553–573  mathnet  crossref  mathscinet  zmath
    5. Yu. G. Safarov, “Asymptotic of the spectral function of a positive elliptic operator without the nontrap condition”, Funct. Anal. Appl., 22:3 (1988), 213–223  mathnet  crossref  mathscinet  zmath  isi
    6. A. I. Kozko, A. S. Pechentsov, “The spectral function of a singular differential operator of order $2m$”, Izv. Math., 74:6 (2010), 1205–1224  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:264
    Full text:126
    References:40
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020