Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2006, Volume 61, Issue 5(371), Pages 181–182 (Mi umn5396)  

This article is cited in 11 scientific papers (total in 11 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

An estimate for the chromatic number of the space $\mathbb R^4$

L. L. Ivanov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

DOI: https://doi.org/10.4213/rm5396

Full text: PDF file (361 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2006, 61:5, 984–986

Bibliographic databases:

MSC: Primary 05C15; Secondary 05C35, 52C10
Presented: В. М. Бухштабер
Accepted: 28.09.2006

Citation: L. L. Ivanov, “An estimate for the chromatic number of the space $\mathbb R^4$”, Uspekhi Mat. Nauk, 61:5(371) (2006), 181–182; Russian Math. Surveys, 61:5 (2006), 984–986

Citation in format AMSBIB
\Bibitem{Iva06}
\by L.~L.~Ivanov
\paper An estimate for the chromatic number of the space~$\mathbb R^4$
\jour Uspekhi Mat. Nauk
\yr 2006
\vol 61
\issue 5(371)
\pages 181--182
\mathnet{http://mi.mathnet.ru/umn5396}
\crossref{https://doi.org/10.4213/rm5396}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2328262}
\zmath{https://zbmath.org/?q=an:1146.05024}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2006RuMaS..61..984I}
\elib{https://elibrary.ru/item.asp?id=25787338}
\transl
\jour Russian Math. Surveys
\yr 2006
\vol 61
\issue 5
\pages 984--986
\crossref{https://doi.org/10.1070/RM2006v061n05ABEH004361}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000244992000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947227321}


Linking options:
  • http://mi.mathnet.ru/eng/umn5396
  • https://doi.org/10.4213/rm5396
  • http://mi.mathnet.ru/eng/umn/v61/i5/p181

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L.L. Ivanov, “On the Chromatic Numbers of and with Intervals of Forbidden Distances”, Electronic Notes in Discrete Mathematics, 29 (2007), 159  crossref  zmath  scopus
    2. S. V. Nagaeva, “Embeddability of finite distance graphs with a large chromatic number in random graphs”, Dokl. Math., 77:1 (2008), 13–16  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    3. A. B. Kupavskii, A. M. Raigorodskii, “On the chromatic number of $\mathbb R^9$”, J. Math. Sci., 163:6 (2009), 720–731  mathnet  crossref  mathscinet  elib  elib
    4. A. B. Kupavskii, “Lifting of a bound for the chromatic number of $\mathbb R^n$ to higher dimensions”, Dokl. Math., 80:3 (2009), 833–836  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
    5. A.B. Kupavskii, A.M. Raigorodskii, “On the chromatic numbers of small-dimensional Euclidean spaces”, Electronic Notes in Discrete Mathematics, 34 (2009), 435  crossref  mathscinet  zmath  scopus
    6. A. M. Raigorodskii, O. I. Rubanov, “Distance Graphs with Large Chromatic Number and without Large Cliques”, Math. Notes, 87:3 (2010), 392–402  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. A. B. Kupavskii, “On the colouring of spheres embedded in $\mathbb R^n$”, Sb. Math., 202:6 (2011), 859–886  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. E. E. Demekhin, A. M. Raigorodskii, O. I. Rubanov, “Distance graphs having large chromatic numbers and containing no cliques or cycles of a given size”, Sb. Math., 204:4 (2013), 508–538  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Geoffrey Exoo, Dan Ismailescu, Michael Lim, “On the Chromatic Number of
      $$\mathbb {R}^4$$
      R 4”, Discrete Comput Geom, 52:2 (2014), 416  crossref  mathscinet  zmath  isi  scopus
    10. Raigorodskii A.M., “Combinatorial Geometry and Coding Theory*”, Fundam. Inform., 145:3 (2016), 359–369  crossref  mathscinet  zmath  isi  elib  scopus
    11. Cherkashin D.D., Raigorodskii A.M., “On the Chromatic Numbers of Low-Dimensional Spaces”, Dokl. Math., 95:1 (2017), 5–6  crossref  mathscinet  zmath  isi  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:455
    Full text:206
    References:75
    First page:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021