Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1969, Volume 24, Issue 3(147), Pages 157–210 (Mi umn5498)  

This article is cited in 11 scientific papers (total in 11 papers)

The foundations of global analysis

J. Eells


Full text: PDF file (7270 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 517.4+517.9+513.838

Citation: J. Eells, “The foundations of global analysis”, Uspekhi Mat. Nauk, 24:3(147) (1969), 157–210

Citation in format AMSBIB
\Bibitem{Eel69}
\by J.~Eells
\paper The foundations of global analysis
\jour Uspekhi Mat. Nauk
\yr 1969
\vol 24
\issue 3(147)
\pages 157--210
\mathnet{http://mi.mathnet.ru/umn5498}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=248878}


Linking options:
  • http://mi.mathnet.ru/eng/umn5498
  • http://mi.mathnet.ru/eng/umn/v24/i3/p157

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. S. Mityagin, “The homotopy structure of the linear group of a Banach space”, Russian Math. Surveys, 25:5 (1970), 59–103  mathnet  crossref  mathscinet  zmath
    2. V. D. Milman, “Geometric theory of Banach spaces. Part II. Geometry of the unit sphere”, Russian Math. Surveys, 26:6 (1971), 79–163  mathnet  crossref  mathscinet  zmath
    3. D. Ills, “Fredgolmovy struktury”, UMN, 26:6(162) (1971), 213–240  mathnet  mathscinet  zmath
    4. Yu. I. Sapronov, “Local invertibility of nonlinear Fredholm mappings”, Funct. Anal. Appl., 5:4 (1971), 296–300  mathnet  crossref  mathscinet  zmath
    5. A. S. Nemirovskii, S. M. Semenov, “On polynomial approximation of functions on Hilbert space”, Math. USSR-Sb., 21:2 (1973), 255–277  mathnet  crossref  mathscinet  zmath
    6. E. Ya. Antonovskii, “The study of non-smooth maps in Hilbert spaces by methods of smooth analysis”, Russian Math. Surveys, 35:3 (1980), 161–165  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. V. G. Zvyagin, “The set of critical values of a potential Fredholm functional”, Math. Notes, 63:1 (1998), 118–120  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. B. M. Darinskii, Yu. I. Sapronov, S. L. Tsarev, “Bifurcations of extremals of Fredholm functionals”, Journal of Mathematical Sciences, 145:6 (2007), 5311–5453  mathnet  crossref  mathscinet  zmath  elib
    9. I. G. Tsar'kov, “Smoothing of Hilbert-valued uniformly continuous maps”, Izv. Math., 69:4 (2005), 149–160  mathnet  crossref  crossref  mathscinet  zmath  elib
    10. I. G. Tsar'kov, “Localization of smooth and smoothing of uniformly continuous mappings”, Proc. Steklov Inst. Math. (Suppl.), 2005no. , suppl. 2, S196–S210  mathnet  mathscinet  zmath  elib
    11. I. G. Tsar'kov, “Local Smoothing of Uniformly Smooth Maps”, Funct. Anal. Appl., 40:3 (2006), 200–206  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:462
    Full text:243
    References:39
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021