General information
Latest issue
Impact factor
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Uspekhi Mat. Nauk:

Personal entry:
Save password
Forgotten password?

Uspekhi Mat. Nauk, 2002, Volume 57, Issue 5(347), Pages 79–138 (Mi umn553)  

This article is cited in 25 scientific papers (total in 25 papers)

On classification of Lorentzian Kac–Moody algebras

V. A. Gritsenkoab, V. V. Nikulincd

a University of Sciences and Technologies
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
c Steklov Mathematical Institute, Russian Academy of Sciences
d University of Liverpool

Abstract: The general theory of Lorentzian Kac–Moody algebras is considered. This theory must serve as a hyperbolic analogue of the classical theories of finite-dimensional semisimple Lie algebras and affine Kac–Moody algebras. The first examples of Lorentzian Kac–Moody algebras were found by Borcherds. Here general finiteness results for the set of Lorentzian Kac–Moody algebras of rank $\geqslant 3$ are considered along with the classification problem for these algebras. As an example, a classification is given for Lorentzian Kac–Moody algebras of rank 3 with hyperbolic root lattice $S_t^*$, symmetry lattice $L_t^*$, and symmetry group $\widehat O^+(L_t)$, $t\in\mathbb N$, where $S_t$ and $L_t$ are given by
\begin{gather*} S_t=H\oplus\langle 2t\rangle=(\begin{smallmatrix}0&0&-1
0&2t&0\1&0&0\end{smallmatrix}), \quad L_t=H\oplus S_t=(\begin{smallmatrix}0&0&0&0&-1
H=(\begin{smallmatrix}0&-1\1&0\end{smallmatrix}), \quad \end{gather*}
and $\widehat O^+(L_t)=\{g\in O^+(L_t)\mid g$ is trivial on $L_t^*/L_t\}$, is the extended paramodular group. This is perhaps the first example in which a large class of Lorentzian Kac–Moody algebras has been classified.


Full text: PDF file (662 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2002, 57:5, 921–979

Bibliographic databases:

UDC: 512.818.4+512.817.72+511.334+512.774
MSC: Primary 17B67; Secondary 11F22, 11F50, 14J15, 14J28, 81R10
Received: 17.01.2002

Citation: V. A. Gritsenko, V. V. Nikulin, “On classification of Lorentzian Kac–Moody algebras”, Uspekhi Mat. Nauk, 57:5(347) (2002), 79–138; Russian Math. Surveys, 57:5 (2002), 921–979

Citation in format AMSBIB
\by V.~A.~Gritsenko, V.~V.~Nikulin
\paper On classification of Lorentzian Kac--Moody algebras
\jour Uspekhi Mat. Nauk
\yr 2002
\vol 57
\issue 5(347)
\pages 79--138
\jour Russian Math. Surveys
\yr 2002
\vol 57
\issue 5
\pages 921--979

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Related presentations:

    This publication is cited in the following articles:
    1. Scheithauer N.R., “On the classification of automorphic products and generalized Kac-Moody algebras”, Invent. Math., 164:3 (2006), 641–678  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    2. Dolgachev I.V., “Reflection groups in algebraic geometry”, Bull. Amer. Math. Soc. (N.S.), 45:1 (2008), 1–60  crossref  mathscinet  zmath  isi
    3. Nikulin V.V., “On Ground Fields of Arithmetic Hyperbolic Reflection Groups”, Groups and Symmetries: From Neolithic Scots To John McKay, Crm Proceedings & Lecture Notes, 47, 2009, 299–326  crossref  mathscinet  zmath  isi
    4. Carbone L., Chung S., Cobbs L., McRae R., Nandi D., Naqvi Y., Penta D., “Classification of hyperbolic Dynkin diagrams, root lengths and Weyl group orbits”, J. Phys. A, 43:15 (2010), 155209, 30 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    5. Chapovalov D., Chapovalov M., Lebedev A., Leites D., “The Classification of Almost Affine (Hyperbolic) Lie Superalgebras”, Journal of Nonlinear Mathematical Physics, 17, Suppl. 1 (2010), 103–161  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. Chapovalov M., Leites D., Stekolshchik R., “The Poincaré Series of the Hyperbolic Coxeter Groups With Finite Volume of Fundamental Domains”, Journal of Nonlinear Mathematical Physics, 17, Suppl. 1 (2010), 169–215  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    7. Govindarajan S., Krishna K.G., “BKM Lie superalgebras from dyon spectra in Z(N) CHL orbifolds for composite N”, Journal of High Energy Physics, 2010, no. 5, 014  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Govindarajan S., “BKM Lie superalgebras from counting twisted CHL dyons”, Journal of High Energy Physics, 2011, no. 5, 089  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Clery F., Gritsenko V., “Siegel modular forms of genus 2 with the simplest divisor”, Proc London Math Soc, 102:6 (2011), 1024–1052  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    10. Krishna K.G., “Bkm Lie Superalgebra for the Z(5)-Orbifolded Chl String”, J. High Energy Phys., 2012, no. 2, 089  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    11. [Anonymous], “The Reflective Lorentzian Lattices of Rank 3 Introduction”, Mem. Am. Math. Soc., 220:1033 (2012), VII+  mathscinet  isi
    12. H.H.. Kim, Kyu-Hwan Lee, “Automorphic correction of the hyperbolic Kac-Moody algebra E10”, J. Math. Phys, 54:9 (2013), 091701  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    13. Gerald Höhn, N.R.. Scheithauer, “A generalized Kac–Moody algebra of rank 14”, Journal of Algebra, 404 (2014), 222  crossref  mathscinet  zmath  isi  scopus  scopus
    14. H.H.. Kim, Kyu-Hwan Lee, “Rank 2 symmetric hyperbolic Kac–Moody algebras and Hilbert modular forms”, Journal of Algebra, 407 (2014), 81  crossref  mathscinet  zmath  isi  scopus  scopus
    15. Gritsenko V., Hulek K., “Uniruledness of Orthogonal Modular Varieties”, J. Algebr. Geom., 23:4 (2014), 711–725  crossref  mathscinet  zmath  isi  scopus  scopus
    16. Valery Gritsenko, Cris Poor, D.S.. Yuen, “Borcherds Products Everywhere”, Journal of Number Theory, 148 (2015), 164  crossref  mathscinet  zmath  isi  scopus  scopus
    17. Kim H.H., Lee K.-H., Zhang Y., “Weakly Holomorphic Modular Forms and Rank Two Hyperbolic Kac-Moody Algebras”, 367, no. 12, 2015, PII S 0002-9947(2015)06438-1, 8843–8860  mathscinet  zmath  isi
    18. Allcock D., “Root Systems For Lorentzian Kac-Moody Algebras in Rank 3”, 47, no. 2, 2015, 325–342  crossref  mathscinet  zmath  isi  scopus  scopus
    19. Belolipetsky M., “Arithmetic hyperbolic reflection groups”, Bull. Amer. Math. Soc., 53:3 (2016), 437–475  crossref  mathscinet  zmath  isi  elib  scopus
    20. Ma Sh., “Finiteness of 2-reflective lattices of signature (2,n)”, Am. J. Math., 139:2 (2017), 513–524  crossref  mathscinet  zmath  isi  scopus  scopus
    21. Scheithauer N.R., “Automorphic Products of Singular Weight”, Compos. Math., 153:9 (2017), 1855–1892  crossref  mathscinet  zmath  isi  scopus  scopus
    22. Gritsenko V., Nikulin V.V., “Lorentzian Kac-Moody Algebras With Weyl Groups of 2-Reflections”, Proc. London Math. Soc., 116:3 (2018), 485–533  crossref  mathscinet  zmath  isi  scopus  scopus
    23. V. A. Gritsenko, “Reflective modular forms and applications”, Russian Math. Surveys, 73:5 (2018), 797–864  mathnet  crossref  crossref  adsnasa  isi  elib
    24. Dittmann M., “Reflective Automorphic Forms on Lattices of Squarefree Level”, Trans. Am. Math. Soc., 372:2 (2019), 1333–1362  crossref  isi
    25. Govindarajan S., Samanta S., “Bkm Lie Superalgebras From Counting Twisted Chl Dyons - II”, Nucl. Phys. B, 948 (2019), UNSP 114770  crossref  isi
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:578
    Full text:240
    First page:2

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020