|
This article is cited in 30 scientific papers (total in 30 papers)
Theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems
I. D. Chueshov V. N. Karazin Kharkiv National University
DOI:
https://doi.org/10.4213/rm57
Full text:
PDF file (523 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 1998, 53:4, 731–776
Bibliographic databases:
UDC:
517.94
MSC: 37Lxx, 37K40, 35B40, 37B55 Received: 15.09.1997
Citation:
I. D. Chueshov, “Theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems”, Uspekhi Mat. Nauk, 53:4(322) (1998), 77–124; Russian Math. Surveys, 53:4 (1998), 731–776
Citation in format AMSBIB
\Bibitem{Chu98}
\by I.~D.~Chueshov
\paper Theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems
\jour Uspekhi Mat. Nauk
\yr 1998
\vol 53
\issue 4(322)
\pages 77--124
\mathnet{http://mi.mathnet.ru/umn57}
\crossref{https://doi.org/10.4213/rm57}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1668050}
\zmath{https://zbmath.org/?q=an:0948.34035}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1998RuMaS..53..731C}
\transl
\jour Russian Math. Surveys
\yr 1998
\vol 53
\issue 4
\pages 731--776
\crossref{https://doi.org/10.1070/rm1998v053n04ABEH000057}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000078716700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0039530497}
Linking options:
http://mi.mathnet.ru/eng/umn57https://doi.org/10.4213/rm57 http://mi.mathnet.ru/eng/umn/v53/i4/p77
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
I. D. Chueshov, “Analyticity of global attractors and determining nodes for a class of damped non-linear wave equations”, Sb. Math., 191:10 (2000), 1541–1559
-
A. V. Romanov, “Finite-dimensional dynamics on attractors of non-linear parabolic equations”, Izv. Math., 65:5 (2001), 977–1001
-
IGOR CHUESHOV, JINQIAO DUAN, BJÖRN SCHMALFUSS, “PROBABILISTIC DYNAMICS OF TWO-LAYER GEOPHYSICAL FLOWS”, Stoch. Dyn, 01:04 (2001), 451
-
JINQIAO DUAN, HONGJUNG GAO, BJÖRN SCHMALFUß, “STOCHASTIC DYNAMICS OF A COUPLED ATMOSPHERE–OCEAN MODEL”, Stoch. Dyn, 02:03 (2002), 357
-
Chueshov I., Duan Jinqiao, Schmalfuss B., “Determining functionals for random partial differential equations”, NoDEA Nonlinear Differential Equations Appl., 10:4 (2003), 431–454
-
Shcherbina A.S., “Gevrey regularity of the global attractor for the dissipative Zakharov system”, Dyn. Syst., 18:3 (2003), 201–225
-
Hale J.K., Raugel G., “Regularity, determining modes and Galerkin methods”, J. Math. Pures Appl. (9), 82:9 (2003), 1075–1136
-
Rekalo A.M., “Asymptotic behavior of solutions of nonlinear parabolic equations on two-layer thin domains”, Nonlinear Anal., 52:5 (2003), 1393–1410
-
Chueshov I., Lasiecka I., “Determining functionals for a class of second order in time evolution equations with applications to von Karman equations”, Analysis and Optimization of Differential Systems, International Federation for Information Processing, 121, 2003, 109–122
-
Chueshov, I, “Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation”, Communications in Partial Differential Equations, 29:11–12 (2004), 1847
-
Gorban A.N., Karlin I.V., Zinovye A.Yu., “Constructive methods of invariant manifolds for kinetic problems”, Physics Reports-Review Section of Physics Letters, 396:4–6 (2004), 197–403
-
Ilyin, AA, “Sharp estimates for the number of degrees of freedom for the damped-driven 2-D Navier–Stokes equations”, Journal of Nonlinear Science, 16:3 (2006), 233
-
T. Yu. Semenova, “Approximation by step functions of functions belonging to Sobolev spaces
and uniqueness of solutions of differential equations of the form $u-F(x,u,u')$”, Izv. Math., 71:1 (2007), 149–180
-
Okay Çelebi, Davut Uǧurlu, “Determining Functionals for the Strongly Damped Nonlinear Wave Equation”, Journal of Dynamical Systems and Geometric Theories, 5:2 (2007), 105
-
Chueshov I., Lasiecka I., Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195, no. 912, 2008, viii+183 pp.
-
Ilyin, AA, “The damped-driven 2D Navier–Stokes system on large elongated domains”, Journal of Mathematical Fluid Mechanics, 10:2 (2008), 159
-
T. Yu. Semenova, “Conditions on Determining Functionals for Subsets of Sobolev Space”, Math. Notes, 86:6 (2009), 831–841
-
Kalantarov V.K., Titi E.S., “Global attractors and determining modes for the 3D Navier–Stokes-Voight equations”, Chin. Ann. Math. Ser. B, 30:6 (2009), 697–714
-
Semenova T.Yu., “A class of determining functionals for quasilinear elliptic problems”, Moscow Univ. Math. Bull., 64:1 (2009), 11–15
-
Igor Chueshov, “Long-time dynamics of Kirchhoff wave models with strong nonlinear damping”, Journal of Differential Equations, 2011
-
Ermakov I.V., Kalinin Yu.N., Reitmann V., “Determining modes and almost periodic integrals for cocycles”, Differ Equ, 47:13 (2011), 1837–1852
-
Chueshov I., Kolbasin S., “Long-Time Dynamics in Plate Models With Strong Nonlinear Damping”, Commun Pure Appl Anal, 11:2 (2012), 659–674
-
Ciprian Foias, Michael S. Jolly, Rostyslav Kravchenko, Edriss S. Titi, “A determining form for the two-dimensional Navier–Stokes equations: The Fourier modes case”, J. Math. Phys, 53:11 (2012), 115623
-
I. V. Ermakov, V. Reitmann, “Determining functionals for the microwave heating system”, Vestnik St.Petersb. Univ.Math, 45:4 (2012), 153
-
Ülkü Dinlemez, “Global Existence, Uniqueness of Weak Solutions and Determining Functionals for Nonlinear Wave Equations”, APM, 03:05 (2013), 451
-
Soltanov K.N., Prykarpatski A.K., Blackmore D., “Long-Time Behavior of Solutions and Chaos in Reaction-Diffusion Equations”, Chaos Solitons Fractals, 99 (2017), 91–100
-
Cui H., Freitas M.M., Langa J.A., “Squeezing and Finite Dimensionality of Cocycle Attractors For 2D Stochastic Navier–Stokes Equation With Non-Autonomous Forcing”, Discrete Contin. Dyn. Syst.-Ser. B, 23:3 (2018), 1297–1324
-
Kalantarov V.K., Titi E.S., “Global Stabilization of the Navier–Stokes-Voight and the Damped Nonlinear Wave Equations By Finite Number of Feedback Controllers”, Discrete Contin. Dyn. Syst.-Ser. B, 23:3 (2018), 1325–1345
-
Bilgin B.A., Kalantarov V.K., “Existence of An Attractor and Determining Modes For Structurally Damped Nonlinear Wave Equations”, Physica D, 376:SI (2018), 15–22
-
Bilgin B., Kalantarov V., “Determining Functionals For Damped Nonlinear Wave Equations”, Complex Var. Elliptic Equ., 63:7-8, SI (2018), 931–944
|
Number of views: |
This page: | 464 | Full text: | 206 | References: | 42 | First page: | 1 |
|