RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



УМН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


УМН, 2003, том 58, выпуск 2(350), страницы 3–44 (Mi umn609)  

Эта публикация цитируется в 260 научных статьях (всего в 260 статьях)

$L_{3,\infty}$-решения уравнений Навье–Стокса и обратная единственность

Л. Искауриазаa, Г. А. Серёгинb, В. Шверакc

a Universidad del Pais Vasco-Euskal Herriko Unibertsitatea, Dipartimento di Matematicas
b Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН
c University of Minnesota, School of Mathematics

Аннотация: Показано, что $L_{3,\infty}$-решения задачи Коши для трехмерных уравнений Навье–Стокса являются гладкими.
Библиография: 46 названий.

DOI: https://doi.org/10.4213/rm609

Полный текст: PDF файл (480 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Russian Mathematical Surveys, 2003, 58:2, 211–250

Реферативные базы данных:

УДК: 517.9
MSC: Primary 35Q30; Secondary 35B65, 35D10, 35A05, 35K05, 35K60, 35B60, 76D05
Поступила в редакцию: 15.02.2003

Образец цитирования: Л. Искауриаза, Г. А. Серëгин, В. Шверак, “$L_{3,\infty}$-решения уравнений Навье–Стокса и обратная единственность”, УМН, 58:2(350) (2003), 3–44; Russian Math. Surveys, 58:2 (2003), 211–250

Цитирование в формате AMSBIB
\RBibitem{EscSerSve03}
\by Л.~Искауриаза, Г.~А.~Сер\"eгин, В.~Шверак
\paper $L_{3,\infty}$-решения уравнений Навье--Стокса и обратная единственность
\jour УМН
\yr 2003
\vol 58
\issue 2(350)
\pages 3--44
\mathnet{http://mi.mathnet.ru/umn609}
\crossref{https://doi.org/10.4213/rm609}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1992563}
\zmath{https://zbmath.org/?q=an:1064.35134}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2003RuMaS..58..211E}
\transl
\jour Russian Math. Surveys
\yr 2003
\vol 58
\issue 2
\pages 211--250
\crossref{https://doi.org/10.1070/RM2003v058n02ABEH000609}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000184540100001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0042154193}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/umn609
  • https://doi.org/10.4213/rm609
  • http://mi.mathnet.ru/rus/umn/v58/i2/p3

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. G. A. Seregin, V. Šverak, “On smoothness of suitable weak solutions to the Navier–Stokes equations”, Краевые задачи математической физики и смежные вопросы теории функций. 34, Зап. научн. сем. ПОМИ, 306, ПОМИ, СПб., 2003, 186–198  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 130:4 (2005), 4884–4892  crossref
    2. G. A. Seregin, “Remarks on regularity of weak solutions to the Navier–Stokes equations near the boundary”, Краевые задачи математической физики и смежные вопросы теории функций. 33, Зап. научн. сем. ПОМИ, 295, ПОМИ, СПб., 2003, 168–179  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 127:2 (2005), 1915–1922  crossref
    3. О. А. Ладыженская, “Шестая проблема тысячелетия: уравнения Навье–Стокса, существование и гладкость”, УМН, 58:2(350) (2003), 45–78  mathnet  crossref  mathscinet  zmath  adsnasa  elib; O. A. Ladyzhenskaya, “Sixth problem of the millennium: Navier–Stokes equations, existence and smoothness”, Russian Math. Surveys, 58:2 (2003), 251–286  crossref  isi  elib
    4. Berselli L.C., Galdi G.P., “On the space-time regularity of $C(0,T;L^n)$-very weak solutions to the Navier-Stokes equations”, Nonlinear Anal., 58:5-6 (2004), 703–717  crossref  mathscinet  zmath  isi
    5. Kim H., Kozono H., “Interior regularity criteria in weak spaces for the Navier-Stokes equations”, Manuscripta Math., 115:1 (2004), 85–100  crossref  mathscinet  zmath  isi
    6. G. A. Seregin, T. N. Shilkin, V. A. Solonnikov, “Boundary partial regularity for the Navier–Stokes equations”, Краевые задачи математической физики и смежные вопросы теории функций. 35, Зап. научн. сем. ПОМИ, 310, ПОМИ, СПб., 2004, 158–190  mathnet  mathscinet  zmath  elib; J. Math. Sci. (N. Y.), 132:3 (2006), 339–358  crossref
    7. Seregin G., “On smoothness of $L_{3,\infty}$-solutions to the Navier-Stokes equations up to boundary”, Math. Ann., 332:1 (2005), 219–238  crossref  mathscinet  zmath  isi  elib
    8. Feireisl E., Novotný A., Petzeltová H., “On a class of physically admissible variational solutions to the Navier-Stokes-Fourier system”, Z. Anal. Anwendungen, 24:1 (2005), 75–101  crossref  mathscinet  zmath  isi
    9. Kang K., Lee J., “On regularity criteria in conjunction with the pressure of the Navier-Stokes equations”, Int. Math. Res. Not., 2006, 80762, 25 pp.  crossref  mathscinet  zmath  isi
    10. W. Zajączkowski, G. A. Seregin, “A sufficient condition of local regularity for the Navier–Stokes equations”, Краевые задачи математической физики и смежные вопросы теории функций. 37, Зап. научн. сем. ПОМИ, 336, ПОМИ, СПб., 2006, 46–54  mathnet  mathscinet  zmath  elib; J. Math. Sci. (N. Y.), 143:2 (2007), 2869–2874  crossref
    11. A. Mahalov, B. Nicolaenko, T. N. Shilkin, “$L_{3,\infty}$-solutions to the MHD equations”, Краевые задачи математической физики и смежные вопросы теории функций. 37, Зап. научн. сем. ПОМИ, 336, ПОМИ, СПб., 2006, 112–132  mathnet  mathscinet  zmath  elib; J. Math. Sci. (N. Y.), 143:2 (2007), 2911–2923  crossref
    12. A. S. Mikhailov, T. N. Shilkin, “$L_{3,\infty}$-solutions to the 3D-Navier–Stokes system in the domain with a curved boundary”, Краевые задачи математической физики и смежные вопросы теории функций. 37, Зап. научн. сем. ПОМИ, 336, ПОМИ, СПб., 2006, 133–152  mathnet  mathscinet  zmath  elib; J. Math. Sci. (N. Y.), 143:2 (2007), 2924–2935  crossref
    13. G. A. Seregin, “Estimates of suitable weak solutions to the Navier–Stokes equations in critical Morrey spaces”, Краевые задачи математической физики и смежные вопросы теории функций. 37, Зап. научн. сем. ПОМИ, 336, ПОМИ, СПб., 2006, 199–210  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 143:2 (2007), 2961–2968  crossref
    14. Г. А. Серегин, “Новая версия условия Ладыженской–Проди–Серрина”, Алгебра и анализ, 18:1 (2006), 124–143  mathnet  mathscinet  zmath  elib; G. A. Seregin, “New version of the Ladyzhenskaya–Prodi–Serrin condition”, St. Petersburg Math. J., 18:1 (2007), 89–103  crossref
    15. Zhang Qi, “Local estimates on two linear parabolic equations with singular coefficients”, Pacific J. Math., 223:2 (2006), 367–396  crossref  mathscinet  zmath  isi
    16. Escauriaza L., Kenig C.E., Ponce G., Vega L., “Decay at infinity of caloric functions within characteristic hyperplanes”, Math. Res. Lett., 13:2-3 (2006), 441–453  crossref  mathscinet  zmath  isi  elib
    17. Germain P., “Multipliers, paramultipliers, and weak-strong uniqueness for the Navier-Stokes equations”, J. Differential Equations, 226:2 (2006), 373–428  crossref  mathscinet  zmath  adsnasa  isi
    18. Gustafson S., Kang Kyungkeun, Tsai Tai-Peng, “Regularity criteria for suitable weak solutions of the Navier-Stokes equations near the boundary”, J. Differential Equations, 226:2 (2006), 594–618  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. Kukavica I., “Pressure integrability conditions for uniqueness of mild solutions of the Navier-Stokes system”, J. Differential Equations, 223:2 (2006), 427–441  crossref  mathscinet  zmath  adsnasa  isi
    20. Kukavica I., Ziane M., “One component regularity for the Navier-Stokes equations”, Nonlinearity, 19:2 (2006), 453–469  crossref  mathscinet  zmath  adsnasa  isi  elib
    21. Grujić Z., Zhang Qi S., “Space-time localization of a class of geometric criteria for preventing blow-up in the 3D NSE”, Comm. Math. Phys., 262:3 (2006), 555–564  crossref  mathscinet  zmath  adsnasa  isi
    22. Zhou Yong, “On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $\mathbb R^N$”, Z. Angew. Math. Phys., 57:3 (2006), 384–392  crossref  mathscinet  zmath  isi  elib
    23. Zhou Yong, “On regularity criteria in terms of pressure for the Navier-Stokes equations in $\mathbb R^3$”, Proc. Amer. Math. Soc., 134:1 (2006), 149–156  crossref  mathscinet  zmath  isi
    24. Dongho Chae, “Nonexistence of asymptotically self-similar singularities in the Euler and the Navier–Stokes equations”, Math Ann, 338:2 (2007), 435  crossref  mathscinet  zmath  isi
    25. Г. А. Серëгин, “О локальной регулярности подходящих слабых решений уравнений Навье–Стокса”, УМН, 62:3(375) (2007), 149–168  mathnet  crossref  mathscinet  zmath  adsnasa  elib; G. A. Seregin, “Local regularity for suitable weak solutions of the Navier–Stokes equations”, Russian Math. Surveys, 62:3 (2007), 595–614  crossref  isi  elib
    26. Chae Dongho, Kang Kyungkeun, Lee Jihoon, “On the interior regularity of suitable weak solutions to the Navier-Stokes equations”, Comm. Partial Differential Equations, 32:7-9 (2007), 1189–1207  crossref  mathscinet  zmath  isi
    27. Chae Dongho, “On the regularity conditions for the Navier-Stokes and related equations”, Rev. Mat. Iberoam., 23:1 (2007), 371–384  crossref  mathscinet  zmath  isi
    28. Seregin G., Zajaczkowski W., “A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations”, SIAM J. Math. Anal., 39:2 (2007), 669–685  crossref  mathscinet  zmath  isi  elib
    29. Kukavica I., Ziane M., “Navier-Stokes equations with regularity in one direction”, J. Math. Phys., 48:6 (2007), 065203, 10 pp.  crossref  mathscinet  zmath  adsnasa  isi
    30. Struwe M., “On a Serrin-type regularity criterion for the Navier-Stokes equations in terms of the pressure”, J. Math. Fluid Mech., 9:2 (2007), 235–242  crossref  mathscinet  zmath  isi
    31. Hou Th.Y., Li R., “Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations”, Discrete Contin. Dyn. Syst., 18:4 (2007), 637–642  crossref  mathscinet  zmath  isi
    32. Gustafson S., Kang Kyungkeun, Tsai Tai-Peng, “Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations”, Comm. Math. Phys., 273:1 (2007), 161–176  crossref  mathscinet  zmath  adsnasa  isi  elib
    33. Seregin G., “Navier-Stokes equations: almost $L_{3,\infty}$-case”, J. Math. Fluid Mech., 9:1 (2007), 34–43  crossref  mathscinet  zmath  isi  elib
    34. Tao T., “A quantitative formulation of the global regularity problem for the periodic Navier-Stokes equation”, Dyn. Partial Differ. Equ., 4:4 (2007), 293–302  crossref  mathscinet  zmath  isi  elib
    35. Vasseur A.F., “A new proof of partial regularity of solutions to Navier-Stokes equations”, NoDEA Nonlinear Differential Equations Appl., 14:5-6 (2007), 753–785  crossref  mathscinet  zmath  isi  elib
    36. Colliander J., “On blowup solutions of NLS with low regularity initial data”, Harmonic Analysis, Partial Differential Equations, and Related Topics, Contemporary Mathematics Series, 428, 2007, 43–50  crossref  mathscinet  zmath  isi
    37. Kenig C.E., “Some recent applications of unique continuation”, Recent Developments in Nonlinear Partial Differential Equations, Contemporary Mathematics Series, 439, 2007, 25–56  crossref  mathscinet  zmath  isi
    38. Suzuki T., “On partial regularity of suitable weak solutions to the Navier–Stokes equations in unbounded domains”, Manuscripta Math., 125:4 (2008), 471–493  crossref  mathscinet  zmath  isi  elib
    39. Wang Changyou, “Heat flow of harmonic maps whose gradients belong to $L^n_xL^\infty_t$”, Arch. Ration. Mech. Anal., 188:2 (2008), 351–369  crossref  mathscinet  zmath  isi  elib
    40. Chen Qionglei, Miao Changxing, Zhang Zhifei, “On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations”, Comm. Math. Phys., 284:3 (2008), 919–930  crossref  mathscinet  zmath  adsnasa  isi
    41. Fan J., Ozawa T., “Regularity criterion for weak solutions to the Navier-Stokes equations in terms of the gradient of the pressure”, J. Inequal. Appl., 2008, 412678, 6 pp.  crossref  mathscinet  zmath  isi
    42. Costin O., Luo G., Tanveer S., “An integral equation approach to smooth 3D Navier-Stokes solution”, Physica Scripta, T132 (2008), 014040, 9 pp.  crossref  adsnasa  isi
    43. Cao Chongsheng, Titi E.S., “Regularity criteria for the three-dimensional Navier-Stokes equations”, Indiana Univ. Math. J., 57:6 (2008), 2643–2661  crossref  mathscinet  zmath  isi  elib
    44. Chou Kai-Seng, Du Shi-Zhong, “Estimates on the Hausdorff dimension of the rupture set of a thin film”, SIAM J. Math. Anal., 40:2 (2008), 790–823  crossref  mathscinet  zmath  isi
    45. Constantin P., “Euler and Navier-Stokes equations”, Publ. Mat., 52:2 (2008), 235–265  crossref  mathscinet  zmath  isi  elib
    46. Merle F., Raphaël P., “Blow up of the critical norm for some radial $L^2$ super critical nonlinear Schrödinger equations”, Amer. J. Math., 130:4 (2008), 945–978  crossref  mathscinet  zmath  isi
    47. Bae Hyeong-Ohk, Choe Hi Jun, Jin Bum Ja, “Pressure representation and boundary regularity of the Navier-Stokes equations with slip boundary condition”, J. Differential Equations, 244:11 (2008), 2741–2763  crossref  mathscinet  zmath  adsnasa  isi
    48. Fan Jishan, Jiang Song, Ni Guoxi, “On regularity criteria for the $n$-dimensional Navier-Stokes equations in terms of the pressure”, J. Differential Equations, 244:11 (2008), 2963–2979  crossref  mathscinet  zmath  adsnasa  isi
    49. Cai Xiaojing, Jiu Quansen, “Weak and strong solutions for the incompressible Navier-Stokes equations with damping”, J. Math. Anal. Appl., 343:2 (2008), 799–809  crossref  mathscinet  zmath  isi
    50. Mahalov A., Nicolaenko B., Seregin G., “New sufficient conditions of local regularity for solutions to the Navier-Stokes equations”, J. Math. Fluid Mech., 10:1 (2008), 106–125  crossref  mathscinet  zmath  isi  elib
    51. Hoff D., Tsyganov E., “Time analyticity and backward uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow”, J. Differential Equations, 245:10 (2008), 3068–3094  crossref  mathscinet  zmath  adsnasa  isi
    52. Hou Thomas Y., Lei Zhen, Li Congming, “Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data”, Comm. Partial Differential Equations, 33:9 (2008), 1622–1637  crossref  mathscinet  zmath  isi
    53. Kenig C.E., “The global behavior of solutions to critical nonlinear dispersive and wave equations”, Harmonic Analysis and Partial Differential Equations, Contemporary Mathematics, 505, 2008, 53–60  crossref  mathscinet  isi
    54. Hou Thomas Y., Lei Zhen, “On the stabilizing effect of convection in three-dimensional incompressible flows”, Comm. Pure Appl. Math., 62:4 (2009), 501–564  crossref  mathscinet  zmath  isi
    55. Zhou Yong, Fan Jishan, “Regularity criteria for the viscous Camassa-Holm equations”, Int. Math. Res. Not. IMRN, 2009, no. 13, 2508–2518  crossref  mathscinet  zmath  isi
    56. Fan Jishan, Ozawa Tohru, “Logarithmically improved regularity criteria for Navier-Stokes and related equations”, Math. Methods Appl. Sci., 32:17 (2009), 2309–2318  crossref  mathscinet  zmath  isi
    57. Yong Yan, Jiu Quan Sen, “Energy equality and uniqueness of weak solutions to MHD equations in $L^\infty(0,T;L^n(\Omega))$”, Acta Math. Sin. (Engl. Ser.), 25:5 (2009), 803–814  crossref  mathscinet  zmath  adsnasa  isi
    58. Robinson J.C., Sadowski W., “A criterion for uniqueness of Lagrangian trajectories for weak solutions of the 3D Navier-Stokes equations”, Comm. Math. Phys., 290:1 (2009), 15–22  crossref  mathscinet  zmath  adsnasa  isi
    59. Berselli L.C., “Some criteria concerning the vorticity and the problem of global regularity for the 3D Navier–Stokes equations”, Ann. Univ. Ferrara, 55:2 (2009), 209–224  crossref  mathscinet  zmath
    60. V. A. Vyalov, “On the local smoothness of weak solutions to the MHD system”, Краевые задачи математической физики и смежные вопросы теории функций. 40, Зап. научн. сем. ПОМИ, 370, ПОМИ, СПб., 2009, 5–21  mathnet; J. Math. Sci. (N. Y.), 166:1 (2010), 1–10  crossref
    61. A. Mikhaylov, “Local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary”, Краевые задачи математической физики и смежные вопросы теории функций. 40, Зап. научн. сем. ПОМИ, 370, ПОМИ, СПб., 2009, 73–93  mathnet; J. Math. Sci. (N. Y.), 166:1 (2010), 40–52  crossref
    62. Chae Dongho, “On the behaviors of solutions near possible blow-up time in the incompressible Euler and related equations”, Comm. Partial Differential Equations, 34:10 (2009), 1265–1286  crossref  mathscinet  zmath  isi
    63. Chen Qionglei, Miao Changxing, Zhang Zhifei, “On the uniqueness of weak solutions for the 3D Navier-Stokes equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26:6 (2009), 2165–2180  crossref  mathscinet  zmath  adsnasa  isi
    64. Dong Hongjie, Du Dapeng, “The Navier-Stokes equations in the critical Lebesgue space”, Comm. Math. Phys., 292:3 (2009), 811–827  crossref  mathscinet  zmath  adsnasa  isi  elib
    65. Dong Hongjie, Pavlović N., “A regularity criterion for the dissipative quasi-geostrophic equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26:5 (2009), 1607–1619  crossref  mathscinet  zmath  adsnasa  isi
    66. Cortissoz J., “Some elementary estimates for the Navier-Stokes system”, Proc. Amer. Math. Soc., 137:10 (2009), 3343–3353  crossref  mathscinet  zmath  isi  elib
    67. Fan J., Ozawa T., “Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model”, Kinet. Relat. Models, 2:2 (2009), 293–305  crossref  mathscinet  zmath  isi
    68. Fan Jishan, Gao Hongjun, “Regularity conditions for the 3D Navier-Stokes equations”, Quart. Appl. Math., 67:1 (2009), 195–199  crossref  mathscinet  zmath  isi
    69. Zhou Yong, Gala S., “Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces”, J. Math. Anal. Appl., 356:2 (2009), 498–501  crossref  mathscinet  zmath  isi
    70. Galaktionov V.A., Mitidieri E., Pohozaev S.I., “On global solutions and blow-up for Kuramoto-Sivashinsky-type models, and well-posed Burnett equations”, Nonlinear Anal., 70:8 (2009), 2930–2952  crossref  mathscinet  zmath  isi  elib
    71. Seregin G., Šverák V., “On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations”, Comm. Partial Differential Equations, 34:2 (2009), 171–201  crossref  mathscinet  zmath  isi  elib
    72. Doering Ch.R., “The 3D Navier-Stokes Problem”, Annu. Rev. Fluid Mech., 41 (2009), 109–128  crossref  mathscinet  zmath  adsnasa  isi
    73. Koch G., Nadirashvili N., Seregin G.A., Šverá k V., “Liouville theorems for the Navier-Stokes equations and applications”, Acta Math., 203:1 (2009), 83–105  crossref  mathscinet  zmath  isi
    74. Wang Keyan, “On global regularity of incompressible Navier-Stokes equations in $\mathbb R^3$”, Commun. Pure Appl. Anal., 8:3 (2009), 1067–1072  crossref  mathscinet  zmath  isi
    75. Hou Thomas Y., Lei Zhen, “On the partial regularity of a 3D model of the Navier-Stokes equ”, Comm. Math. Phys., 287:2 (2009), 589–612  crossref  mathscinet  zmath  adsnasa  isi
    76. Vasseur A., “Regularity criterion for 3d navier-stokes equations in terms of the direction of the velocity”, Appl. Math., 54:1 (2009), 47–52  crossref  mathscinet  zmath  isi
    77. Fan J., Gao H., “Two Component Regularity for the Navier-Stokes Equations”, Electronic Journal of Differential Equations, 2009, 121  mathscinet  isi
    78. Gala S., “A Remark on the Regularity for the 3D Navier-Stokes Equations in Terms of the Two Components of the Velocity”, Electronic Journal of Differential Equations, 2009, 148  mathscinet  isi
    79. Cheskidov A., Shvydkoy R., “The regularity of weak solutions of the 3D Navier–Stokes equations in $B_{\infty,\infty}^{-1}$”, Arch. Rational Mech. Anal., 195:1 (2010), 159–169  crossref  mathscinet  zmath  adsnasa  isi
    80. Grujić Z., Guberović R., “Localization of Analytic Regularity Criteria on the Vorticity and Balance Between the Vorticity Magnitude and Coherence of the Vorticity Direction in the 3D NSE”, Comm. Math. Phys., 2010  crossref  mathscinet  isi
    81. Cao Chongsheng, “Sufficient conditions for the regularity to the 3D Navier-Stokes equations”, Discrete Contin. Dyn. Syst., 26:4 (2010), 1141–1151  crossref  mathscinet  zmath  isi  elib
    82. Kukavica I., “On regularity for the Navier-Stokes equations in Morrey spaces”, Discrete Contin. Dyn. Syst., 26:4 (2010), 1319–1328  crossref  mathscinet  zmath  isi
    83. Kim Jaewoo, Kim Myeonghyeon, “Local regularity of the Navier-Stokes equations near the curved boundary”, J. Math. Anal. Appl., 363:1 (2010), 161–173  crossref  mathscinet  zmath  isi  elib
    84. Cao Chongsheng, Wu Jiahong., “Two regularity criteria for the 3D MHD equations”, J. Differ. Equations, 248:9 (2010), 2263–2274  crossref  mathscinet  zmath  adsnasa  isi  elib
    85. Feireisl E., “Mathematical theory of viscous fluids: Retrospective and future perspectives”, Discrete Contin. Dyn. Syst., 27:2 (2010), 533–555  crossref  mathscinet  zmath  isi  elib
    86. Jae-Myoung Kim, “On regularity criteria of the Navier–Stokes equations in bounded domains”, J Math Phys (N Y ), 51:5 (2010), 053102  crossref  mathscinet  adsnasa  isi  elib
    87. Kyungkeun Kang, Jihoon Lee, “On the behaviour of Navier–Stokes equations near a possible singular point”, Nonlinearity, 23:12 (2010), 3187  crossref  mathscinet  zmath  adsnasa  isi
    88. V. Vyalov, T. Shilkin, “On the boundary regularity of weak solutions to the MHD system”, Краевые задачи математической физики и смежные вопросы теории функций. 41, Зап. научн. сем. ПОМИ, 385, ПОМИ, СПб., 2010, 18–53  mathnet; J. Math. Sci. (N. Y.), 178:3 (2011), 243–264  crossref
    89. A. S. Mikhaylov, “On local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary”, Краевые задачи математической физики и смежные вопросы теории функций. 41, Зап. научн. сем. ПОМИ, 385, ПОМИ, СПб., 2010, 83–97  mathnet; J. Math. Sci. (N. Y.), 178:3 (2011), 282–291  crossref
    90. Lin F., Wang Ch., “On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals”, Chinese Annals of Mathematics Series B, 31:6 (2010), 921–938  crossref  mathscinet  zmath  isi
    91. Wang Shu, “On a New 3D Model for Incompressible Euler and Navier-Stokes Equations”, Acta Mathematica Scientia, 30:6 (2010), 2089–2102  crossref  mathscinet  zmath  isi
    92. Cai Zh., Fan J., Zhai J., “Regularity Criteria in Weak Spaces for 3-Dimensional Navier-Stokes Equations in Terms of the Pressure”, Differential and Integral Equations, 23:11–12 (2010), 1023–1033  mathscinet  zmath  isi
    93. Sugiyama Y., “epsilon-Regularity theorem and its application to the blow-up solutions of Keller-Segel systems in higher dimensions”, Journal of Mathematical Analysis and Applications, 364:1 (2010), 51–70  crossref  mathscinet  zmath  isi
    94. Gibbon J.D., “Regularity and singularity in solutions of the three-dimensional Navier-Stokes equations”, Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 466:2121 (2010), 2587–2604  crossref  mathscinet  zmath  adsnasa  isi  elib
    95. He Cheng, Wang Yun, “Limiting case for the regularity criterion of the Navier-Stokes equations and the magnetohydrodynamic equations”, Science China-Mathematics, 53:7 (2010), 1767–1774  crossref  mathscinet  zmath  adsnasa  isi
    96. Yuan J., “Existence theorem and regularity criteria for the generalized MHD equations”, Nonlinear Analysis-Real World Applications, 11:3 (2010), 1640–1649  crossref  mathscinet  zmath  isi
    97. Qiu H., Du Y., Yao Zheng'an, “A blow-up criterion for 3D Boussinesq equations in Besov spaces”, Nonlinear Analysis-Theory Methods & Applications, 73:3 (2010), 806–815  crossref  mathscinet  zmath  isi
    98. Chae D., “On the Regularity Conditions of Suitable Weak Solutions of the 3D Navier-Stokes Equations”, Journal of Mathematical Fluid Mechanics, 12:2 (2010), 171–180  crossref  mathscinet  zmath  adsnasa  isi
    99. Killip R., Visan M., “Energy-Supercritical NLS: Critical H-S-Bounds Imply Scattering”, Communications in Partial Differential Equations, 35:6 (2010), 945–987  crossref  mathscinet  zmath  isi
    100. Qiu H., Du Y., Yao Zheng'an, “Serrin-type blow-up criteria for 3D Boussinesq equations”, Applicable Analysis, 89:10 (2010), 1603–1613  crossref  mathscinet  zmath  isi
    101. W. Zajączkowski, “A regularity criterion for axially symmetric solutions to the Navier–Stokes equations”, Краевые задачи математической физики и смежные вопросы теории функций. 41, Зап. научн. сем. ПОМИ, 385, ПОМИ, СПб., 2010, 54–68  mathnet; J. Math. Sci. (N. Y.), 178:3 (2011), 265–273  crossref
    102. G. A. Seregin, “Necessary conditions of potential blow up for Navier–Stokes equations”, Краевые задачи математической физики и смежные вопросы теории функций. 41, Зап. научн. сем. ПОМИ, 385, ПОМИ, СПб., 2010, 187–199  mathnet; J. Math. Sci. (N. Y.), 178:3 (2011), 345–352  crossref
    103. Han P., “Regularity and decay properties of weak solutions to Navier-Stokes equations in general domains”, Portugaliae Mathematica, 67:1 (2010), 57–74  crossref  mathscinet  zmath  isi
    104. Gala S., “Regularity for 3D Navier-Stokes Equations in Terms of Two Components of the Vorticity”, Electronic Journal of Differential Equations, 2010, 153  mathscinet  zmath  isi
    105. Koch G.S., “Profile Decompositions for Critical Lebesgue and Besov Space Embeddings”, Indiana Univ Math J, 59:5 (2010), 1801–1830  crossref  mathscinet  zmath  isi
    106. Kukavica I., “Partial regularity for the Navier-Stokes equations with a force in a Morrey space”, Journal of Mathematical Analysis and Applications, 374:2 (2011), 573–584  crossref  mathscinet  zmath  isi
    107. Yoshikazu Giga, Hideyuki Miura, “On Vorticity Directions near Singularities for the Navier-Stokes Flows with Infinite Energy”, Commun. Math. Phys, 2011  crossref  mathscinet  zmath  isi
    108. Jean-Yves Chemin, Isabelle Gallagher, Marius Paicu, “Global regularity for some classes of large solutions to the Navier-Stokes equations”, Ann. Math, 173:2 (2011), 983  crossref  mathscinet  zmath  isi
    109. Qian Zhang, “On the uniqueness of weak solutions for the 3D viscous magneto-hydrodynamic equations”, Nonlinear Analysis: Theory, Methods & Applications, 2011  crossref  mathscinet  isi
    110. Chongsheng Cao, Edriss S. Titi, “Global Regularity Criterion for the 3D Navier–Stokes Equations Involving One Entry of the Velocity Gradient Tensor”, Arch Rational Mech Anal, 2011  crossref  mathscinet  isi
    111. Zujin Zhang, Xinglong Wu, Ming Lu, “On the uniqueness of strong solution to the incompressible Navier–Stokes equations with damping”, Journal of Mathematical Analysis and Applications, 377:1 (2011), 414  crossref  mathscinet  zmath  isi
    112. James C. Robinson, Witold Sadowski, “On the Dimension of the Singular Set of Solutions to the Navier–Stokes Equations”, Commun. Math. Phys, 2011  crossref  isi
    113. G. Seregin, “A Certain Necessary Condition of Potential Blow up for Navier-Stokes Equations”, Commun. Math. Phys, 2011  crossref  mathscinet  isi
    114. Fan J., Jiang S., Nakamura G., Zhou Y., “Logarithmically Improved Regularity Criteria for the Navier-Stokes and MHD Equations”, J Math Fluid Mech, 13:4 (2011), 557–571  crossref  mathscinet  zmath  adsnasa  isi
    115. Gala S., “On the regularity criterion of strong solutions to the 3D Boussinesq equations”, Appl Anal, 90:12 (2011), 1829–1835  crossref  mathscinet  zmath  isi
    116. Kenig C., “Critical non-linear dispersive equations: global existence, scattering, blow-up and universal profiles”, Jpn J Math, 6:2 (2011), 121–141  crossref  mathscinet  zmath  isi
    117. Gala S., “A remark on the logarithmically improved regularity criterion for the micropolar fluid equations in terms of the pressure”, Math Methods Appl Sci, 34:16 (2011), 1945–1953  crossref  mathscinet  zmath  adsnasa  isi
    118. Kenig C.E., Merle F., “Radial Solutions To Energy Supercritical Wave Equations in Odd Dimensions”, Discrete and Continuous Dynamical Systems, 31:4 (2011), 1365–1381  crossref  mathscinet  zmath  isi
    119. Lei Zh., Zhang Q.S., “A Liouville theorem for the axially-symmetric Navier-Stokes equations”, J Funct Anal, 261:8 (2011), 2323–2345  crossref  mathscinet  zmath  isi
    120. Kenig C.E., Merle F., “Nondispersive Radial Solutions To Energy Supercritical Non-Linear Wave Equations, With Applications”, Amer J Math, 133:4 (2011), 1029–1065  crossref  mathscinet  zmath  isi
    121. Costin O., Luo G., Tanveer S., “Integral Formulation of 3D Navier-Stokes and Longer Time Existence of Smooth Solutions”, Commun Contemp Math, 13:3 (2011), 407–462  crossref  mathscinet  zmath  isi  elib
    122. Kenig C.E., Koch G.S., “An alternative approach to regularity for the Navier-Stokes equations in critical spaces”, Ann Inst H Poincaré Anal Non Linéaire, 28:2 (2011), 159–187  crossref  mathscinet  zmath  adsnasa  isi
    123. Fan J., Jiang S., Nakamura G., “On logarithmically improved regularity criteria for the Navier-Stokes equations in R-n”, IMA J Appl Math, 76:2 (2011), 298–311  crossref  mathscinet  zmath  isi
    124. Bjorland C., Vasseur A., “Weak in Space, Log in Time Improvement of the LadyA3/4enskaja-Prodi-Serrin Criteria”, J Math Fluid Mech, 13:2 (2011), 259–269  crossref  mathscinet  zmath  adsnasa  isi
    125. Eduard Feireisl, Antonín Novotný, “Weak–Strong Uniqueness Property for the Full Navier–Stokes–Fourier System”, Arch Rational Mech Anal, 2012  crossref  isi
    126. Wendong Wang, Zhifei Zhang, “Limiting case for the regularity criterion to the 3-D Magneto-hydrodynamics equations”, Journal of Differential Equations, 2012  crossref  mathscinet  isi
    127. Tomoyuki Suzuki, “A remark on the regularity of weak solutions to the Navier–Stokes equations in terms of the pressure in Lorentz spaces”, Nonlinear Analysis: Theory, Methods & Applications, 2012  crossref  mathscinet  isi
    128. Cheng He, Daoguo Zhou, “The existence, uniqueness, and regularity for an incompressible Newtonian flow with intrinsic degree of freedom”, Math. Meth. Appl. Sci, 2012, n/a  crossref  mathscinet  isi
    129. Pigong Han, Cheng He, “Partial regularity of suitable weak solutions to the four-dimensional incompressible magneto-hydrodynamic equations”, Math. Meth. Appl. Sci, 2012, n/a  crossref  mathscinet  isi
    130. Pata V., “On the Regularity of Solutions To the Navier-Stokes Equations”, Commun Pure Appl Anal, 11:2 (2012), 747–761  crossref  mathscinet  zmath  isi
    131. Aynur Bulut, “Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation”, Journal of Functional Analysis, 2012  crossref  mathscinet  isi
    132. Lu Li, Vladimír Šverák, “Backward Uniqueness for the Heat Equation in Cones”, Communications in Partial Differential Equations, 37:8 (2012), 1414  crossref  mathscinet  zmath  isi
    133. WENDONG WANG, ZHIFEI ZHANG, “REGULARITY OF WEAK SOLUTIONS FOR THE NAVIER–STOKES EQUATIONS IN THE CLASS L∞(BMO-1)”, Commun. Contemp. Math, 14:03 (2012), 1250020  crossref  mathscinet  zmath  isi
    134. J. D. Gibbon, “Conditional regularity of solutions of the three-dimensional Navier-Stokes equations and implications for intermittency”, J. Math. Phys, 53:11 (2012), 115608  crossref  mathscinet  zmath  adsnasa  isi
    135. Qiao Liu, Jihong Zhao, Shangbin Cui, “Uniqueness of weak solution to the generalized magneto-hydrodynamic system”, Annali di Matematica, 2012  crossref  mathscinet  isi
    136. Zhao J.-h., Liu Q., “Weak-Strong Uniqueness of Hydrodynamic Flow of Nematic Liquid Crystals”, Electron. J. Differ. Equ., 2012, 182  mathscinet  adsnasa  isi
    137. Guo Zh., Gala S., “A Regularity Criterion for the Navier-Stokes Equations in Terms of One Directional Derivative of the Velocity Field”, Anal. Appl., 10:4 (2012), 373–380  crossref  mathscinet  zmath  isi  elib
    138. Ali H., Ammari Z., “On the Hausdorff Dimension of Singular Sets for the Leray-Alpha Navier-Stokes Equations with Fractional Regularization”, Dyn. Partial Differ. Equ., 9:3 (2012), 261–271  crossref  mathscinet  zmath  isi
    139. Bae H., Biswas A., Tadmor E., “Analyticity and Decay Estimates of the Navier-Stokes Equations in Critical Besov Spaces”, Arch. Ration. Mech. Anal., 205:3 (2012), 963–991  crossref  mathscinet  zmath  isi
    140. Escauriaza L., Kenig C.E., Ponce G., Vega L., “Uniqueness Properties of Solutions to Schrodinger Equations”, Bull. Amer. Math. Soc., 49:3 (2012), 415–442  crossref  mathscinet  zmath  isi
    141. Wei Zh., Wang Yu.-Zh., Wang Y.-X., “Logarithmically Improved Regularity Criteria for the Navier-Stokes Equations in Lorentz Spaces”, Appl. Math. Comput., 218:19 (2012), 9848–9852  crossref  mathscinet  zmath  isi  elib
    142. Cheskidov A., Shvydkoy R., “Ill-Posedness for Subcritical Hyperdissipative Navier-Stokes Equations in the Largest Critical Spaces”, J. Math. Phys., 53:11 (2012), 115620  crossref  mathscinet  zmath  adsnasa  isi
    143. Dascaliuc R., Grujic Z., “Vortex Stretching and Criticality for the Three-Dimensional Navier-Stokes Equations”, J. Math. Phys., 53:11 (2012), 115613  crossref  mathscinet  zmath  adsnasa  isi
    144. Han P., “Interior Regularity of Weak Solutions to the Perturbed Navier-Stokes Equations”, Appl. Mat., 57:5 (2012), 427–444  crossref  mathscinet  zmath  adsnasa  isi  elib
    145. Melcher Ch., “Global Solvability of the Cauchy Problem for the Landau-Lifshitz-Gilbert Equation in Higher Dimensions”, Indiana Univ. Math. J., 61:3 (2012), 1175–1200  crossref  mathscinet  zmath  isi  elib
    146. Chemin J.-Y., Planchon F., “Self-Improving Bounds for the Navier-Stokes Equations”, Bull. Soc. Math. Fr., 140:4 (2012), 583–597  mathscinet  zmath  isi
    147. Jiří Neustupa, “A note on local interior regularity of a suitable weak solution to the Navier–Stokes problem”, DCDS-S, 6:5 (2013), 1391  crossref  mathscinet  zmath  isi
    148. Terence Tao, “Localisation and compactness properties of the Navier–Stokes global regularity problem”, Anal. PDE, 6:1 (2013), 25  crossref  mathscinet  isi
    149. Didier Jesslé, B.J.a Jin, Antonín Novotný, “Navier–Stokes–Fourier System on Unbounded Domains: Weak Solutions, Relative Entropies, Weak-Strong Uniqueness”, SIAM J. Math. Anal, 45:3 (2013), 1907  crossref  mathscinet  zmath  isi
    150. C. Bardos, M. C. Lopes Filho, Dongjuan Niu, H. J. Nussenzveig Lopes, E. S. Titi, “Stability of Two-Dimensional Viscous Incompressible Flows under Three-Dimensional Perturbations and Inviscid Symmetry Breaking”, SIAM J. Math. Anal, 45:3 (2013), 1871  crossref  mathscinet  zmath  isi  elib
    151. Quansen Jiu, Yanqing Wang, “Remarks on partial regularity for suitable weak solutions of the incompressible Magnetohydrodynamics equations”, Journal of Mathematical Analysis and Applications, 2013  crossref  mathscinet  isi
    152. Wendong Wang, Zhifei Zhang, “On the Interior Regularity Criteria for Suitable Weak Solutions of the Magnetohydrodynamics Equations”, SIAM J. Math. Anal, 45:5 (2013), 2666  crossref  mathscinet  zmath  isi
    153. Xiaoxin Zheng, “A regularity criterion for the tridimensional Navier–Stokes equations in term of one velocity component”, Journal of Differential Equations, 2013  crossref  mathscinet  isi
    154. A.R.. Nahmod, Nataša Pavlović, Gigliola Staffilani, “Almost Sure Existence of Global Weak Solutions for Supercritical Navier–Stokes Equations”, SIAM J. Math. Anal, 45:6 (2013), 3431  crossref  mathscinet  zmath  isi
    155. Ballew J., Trivisa K., “Weakly Dissipative Solutions and Weak-Strong Uniqueness for the Navier-Stokes-Smoluchowski System”, Nonlinear Anal.-Theory Methods Appl., 91 (2013), 1–19  crossref  mathscinet  zmath  isi
    156. Hineman J.L., Wang Ch., “Well-Posedness of Nematic Liquid Crystal Flow in l-Uloc(3) (R-3)”, Arch. Ration. Mech. Anal., 210:1 (2013), 177–218  crossref  mathscinet  zmath  isi
    157. Zhao J., Liu Q., “Logarithmically Improved Blow-Up Criteria for a Phase Field Navier-Stokes Vesicle-Fluid Interaction Model”, J. Math. Anal. Appl., 405:2 (2013), 422–437  crossref  mathscinet  isi
    158. Foxall E., Ibrahim S., Yoneda Ts., “Streamlines Concentration and Application to the Incompressible Navler-Stokes Equations”, Tohoku Math. J., 65:2 (2013), 273–279  crossref  mathscinet  zmath  isi
    159. Gallagher I., Koch G.S., Planchon F., “A Profile Decomposition Approach to the l-T(Infinity)(l-X(3)) Navier-Stokes Regularity Criterion”, Math. Ann., 355:4 (2013), 1527–1559  crossref  mathscinet  zmath  isi
    160. Zhou Y., Lei Zh., “Logarithmically Improved Criteria for Euler and Navier-Stokes Equations”, Commun. Pure Appl. Anal, 12:6 (2013), 2715–2719  crossref  mathscinet  zmath  isi  elib
    161. Chan Ch.H., Czubak M., “Non-Uniqueness of the Leray-Hopf Solutions in the Hyperbolic Setting”, Dyn. Partial Differ. Equ., 10:1 (2013), 43–77  crossref  mathscinet  zmath  isi
    162. Raphael P., “Kenig-Merle Concentration Capacity”, Asterisque, 2013, no. 352, 121–146  mathscinet  zmath  isi
    163. Zujin Zhang, Peng Li, Dingxing Zhong, “Navier–Stokes equations with regularity in two entries of the velocity gradient tensor”, Applied Mathematics and Computation, 228 (2014), 546  crossref  mathscinet  isi
    164. Zujin Zhang, “A remark on the regularity criterion for the 3D Navier–Stokes equations involving the gradient of one velocity component”, Journal of Mathematical Analysis and Applications, 2014  crossref  mathscinet  isi
    165. Bo-Qing Dong, Zhifei Zhang, “On the weak–strong uniqueness of Koch–Tataruʼs solution for the Navier–Stokes equations”, Journal of Differential Equations, 2014  crossref  isi
    166. J.C.. Cortissoz, J.A.. Montero, C.E.. Pinilla, “On lower bounds for possible blow-up solutions to the periodic Navier-Stokes equation”, J. Math. Phys, 55:3 (2014), 033101  crossref  zmath  adsnasa  isi
    167. Stefano Bosia, Monica Conti, Vittorino Pata, “A regularity criterion for the Navier-Stokes equations in terms of the pressure gradient”, centr.eur.j.math, 2014  crossref  mathscinet  isi
    168. Reinhard Farwig, “On regularity of weak solutions to the instationary Navier–Stokes system: a review on recent results”, Ann Univ Ferrara, 2014  crossref  mathscinet
    169. Kang K., Kim J.-M., “Boundary Regularity Criteria for Suitable Weak Solutions of the Magnetohydrodynamic Equations”, J. Funct. Anal., 266:1 (2014), 99–120  crossref  mathscinet  isi
    170. Merle F., Raphael P., Szeftel J., “On Collapsing Ring Blow-Up Solutions to the MASS Supercritical Nonlinear Schrodinger Equation”, Duke Math. J., 163:2 (2014), 369–431  crossref  mathscinet  zmath  adsnasa  isi
    171. Jiří Neustupa, Patrick Penel, “Regularity of a Weak Solution to the Navier–Stokes Equations via One Component of a Spectral Projection of Vorticity”, SIAM J. Math. Anal, 46:2 (2014), 1681  crossref  mathscinet  isi
    172. Wendong Wang, Zhifei Zhang, “On the interior regularity criteria and the number of singular points to the Navier-Stokes equations”, JAMA, 123:1 (2014), 139  crossref  isi
    173. Stefano Bosia, Vittorino Pata, J.C.. Robinson, “A Weak-L p Prodi–Serrin Type Regularity Criterion for the Navier–Stokes Equations”, J. Math. Fluid Mech, 2014  crossref  isi
    174. J.D. Gibbon, D.A. Donzis, Anupam Gupta, R.M. Kerr, Rahul Pandit, “Regimes of nonlinear depletion and regularity in the 3D Navier–Stokes equations”, Nonlinearity, 27:10 (2014), 2605  crossref  isi
    175. Jie Wu, Wendong Wang, “On backward uniqueness for the heat operator in cones”, Journal of Differential Equations, 2014  crossref  isi
    176. Jie Wu, Liqun Zhang, “Backward uniqueness for parabolic operators with variable coefficients in a half space”, Commun. Contemp. Math, 2014, 1550011  crossref  isi
    177. Dong H., Gu X., “Boundary Partial Regularity For the High Dimensional Navier-Stokes Equations”, J. Funct. Anal., 267:8 (2014), 2606–2637  crossref  mathscinet  zmath  isi
    178. Jiu Q., Wang Ya., “On Possible Time Singular Points and Eventual Regularity of Weak Solutions To the Fractional Navier-Stokes Equations”, Dyn. Partial Differ. Equ., 11:4 (2014), 321–343  crossref  mathscinet  zmath  isi
    179. Chae D., Tsai T.-P., “On Discretely Self-Similar Solutions of the Euler Equations”, Math. Res. Lett., 21:3 (2014), 437–447  crossref  mathscinet  zmath  isi
    180. Vialov V., “On the Regularity of Weak Solutions To the Mhd System Near the Boundary”, J. Math. Fluid Mech., 16:4 (2014), 745–769  crossref  mathscinet  zmath  isi
    181. Choi K., Vasseur A.F., “Estimates on Fractional Higher Derivatives of Weak Solutions For the Navier-Stokes Equations”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 31:5 (2014), 899–945  crossref  mathscinet  zmath  isi
    182. Chen Q., Tan Zh., Wu G., “Lps's Criterion For Incompressible Nematic Liquid Crystal Flows”, Acta Math. Sci., 34:4 (2014), 1072–1080  crossref  mathscinet  isi
    183. Jia H., Sverak V., “Local-in-Space Estimates Near Initial Time For Weak Solutions of the Navier-Stokes Equations and Forward Self-Similar Solutions”, Invent. Math., 196:1 (2014), 233–265  crossref  mathscinet  zmath  isi
    184. Wong P., “Global Wellposedness For a Certain Class of Large Initial Data For the 3D Navier-Stokes Equations”, Ann. Henri Poincare, 15:4 (2014), 633–643  crossref  mathscinet  zmath  isi
    185. Robinson J.C., Sadowski W., “A Local Smoothness Criterion For Solutions of the 3D Navier-Stokes Equations”, Rend. Semin. Mat. Univ. Padova, 131 (2014), 159–178  crossref  mathscinet  zmath  isi
    186. Cheskidov A., Shvydkoy R., “A Unified Approach To Regularity Problems For the 3D Navier-Stokes and Euler Equations: the Use of Kolmogorov's Dissipation Range”, J. Math. Fluid Mech., 16:2 (2014), 263–273  crossref  mathscinet  zmath  isi
    187. Pigong Han, “Decay Results of Higher-Order Norms for the Navier–Stokes Flows in 3D Exterior Domains”, Commun. Math. Phys, 334:1 (2015), 397  crossref  isi
    188. Zujin Zhang, “An almost Serrin-type regularity criterion for the Navier–Stokes equations involving the gradient of one velocity component”, Z. Angew. Math. Phys, 2015  crossref  isi
    189. Radu Dascaliuc, Nicholas Michalowski, Enrique Thomann, E.C.. Waymire, “Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations”, Chaos, 25:7 (2015), 075402  crossref  isi
    190. Wang B., “Ill-Posedness For the Navier-Stokes Equations in Critical Besov Spaces (B) Over Dot(Infinity,Q) (-1)”, Adv. Math., 268 (2015), 350–372  crossref  mathscinet  zmath  isi
    191. Kim N., Kwak M., Yoo M., “Regularity Conditions of 3D Navier-Stokes Flow in Terms of Large Spectral Components”, Nonlinear Anal.-Theory Methods Appl., 116 (2015), 75–84  crossref  mathscinet  zmath  isi
    192. Ding Y., Sun X., “Uniqueness of Weak Solutions For Fractional Navier-Stokes Equations”, Front. Math. China, 10:1 (2015), 33–51  crossref  mathscinet  zmath  isi
    193. Bae H.-O., “Regularity Criterion For Generalized Newtonian Fluids in Bounded Domains”, J. Math. Anal. Appl., 421:1 (2015), 489–500  crossref  mathscinet  zmath  isi
    194. Zhaohui Dai, Xiaosong Wang, Lingrui Zhang, Wei Hou, “Blow-Up Criterion of Weak Solutions for the 3D Boussinesq Equations”, Journal of Function Spaces, 2015 (2015), 1  crossref  isi
    195. Zujin Zhang, Xian Yang, “On the regularity criterion for the Navier–Stokes equations involving the diagonal entry of the velocity gradient”, Nonlinear Analysis: Theory, Methods & Applications, 122 (2015), 169  crossref  isi
    196. Dongho Chae, “Remarks on the asymptotically discretely self-similar solutions of the Navier–Stokes and the Euler equations”, Nonlinear Analysis: Theory, Methods & Applications, 125 (2015), 251  crossref  isi
    197. Angkana Rüland, “On the backward uniqueness property for the heat equation in two-dimensional conical domains”, manuscripta math, 2015  crossref  isi
    198. Zujin Zhang, Xian Yang, “A note on the regularity criterion for the 3D Navier–Stokes equations via the gradient of one velocity component”, Journal of Mathematical Analysis and Applications, 2015  crossref  isi
    199. Xuanji Jia, Yong Zhou, “Ladyzhenskaya–Prodi–Serrin type regularity criteria for the 3D incompressible MHD equations in terms of 3 × 3 mixture matrices”, Nonlinearity, 28:9 (2015), 3289  crossref  isi
    200. Luo Yu., Tsai T.-P., “Regularity Criteria in Weak l-3 For 3D Incompressible Navier-Stokes Equations”, Funkc. Ekvacioj-Ser. Int., 58:3 (2015), 387–404  isi
    201. Nguyen Cong Phuc, “the Navier-Stokes Equations in Nonendpoint Borderline Lorentz Spaces”, J. Math. Fluid Mech., 17:4 (2015), 741–760  crossref  mathscinet  isi
    202. Xue L., “on the Discretely Self-Similar Solutions For the 3D Navier-Stokes Equations”, Nonlinearity, 28:10 (2015), 3695–3708  crossref  mathscinet  zmath  isi
    203. Barker T., Seregin G., “Ancient Solutions To Navier-Stokes Equations in Half Space”, J. Math. Fluid Mech., 17:3 (2015), 551–575  crossref  mathscinet  zmath  isi
    204. Bulut A., “the Defocusing Energy-Supercritical Cubic Nonlinear Wave Equation in Dimension Five”, Trans. Amer. Math. Soc., 367:9 (2015), 6017–6061  crossref  mathscinet  zmath  isi
    205. Bae H., “Existence and Analyticity of Lei-Lin Solution To the Navier-Stokes Equations”, Proc. Amer. Math. Soc., 143:7 (2015), PII S0002-9939(2015)12266-6, 2887–2892  mathscinet  zmath  isi
    206. Foias C., Jolly M.S., Lan R., Rupam R., Yang Y., Zhang B., “Time Analyticity With Higher Norm Estimates For the 2D Navier-Stokes Equations”, IMA J. Appl. Math., 80:3 (2015), 766–810  crossref  mathscinet  zmath  isi
    207. Tran Ch.V., Yu X., “Depletion of Nonlinearity in the Pressure Force Driving Navier-Stokes Flows”, Nonlinearity, 28:5 (2015), 1295–1306  crossref  mathscinet  zmath  isi
    208. Dodson B., Lawrie A., “Scattering For Radial, Semi-Linear, Super-Critical Wave Equations With Bounded Critical Norm”, Arch. Rational Mech. Anal, 218:3 (2015), 1459–1529  crossref  mathscinet  zmath  isi
    209. Flandoli F., “a Stochastic View Over the Open Problem of Well-Posedness For the 3D Navier-Stokes Equations”, Stochastic Analysis: a Series of Lectures, Progress in Probability, 68, eds. Dalang R., Dozzi M., Flandoli F., Russo F., Birkhauser Verlag Ag, 2015, 221–246  mathscinet  zmath  isi
    210. Cai X., Sun Y., “Blowup Criteria For Strong Solutions To the Compressible Navier-Stokes Equations With Variable Viscosity”, Nonlinear Anal., 29 (2016), 1–18  crossref  mathscinet  isi
    211. Lorenz J., Melo W.G., “on the Blow-Up Criterion of Periodic Solutions For Micropolar Equations in Homogeneous Sobolev Spaces”, Nonlinear Anal., 27 (2016), 93–106  crossref  mathscinet  zmath  isi
    212. Ohkitani K., “Late Formation of Singularities in Solutions To the Navier-Stokes Equations”, J. Phys. A, 49:1 (2016), 015502  crossref  mathscinet  zmath  isi
    213. Skalak Z., “a Regularity Criterion For the Navier-Stokes Equations Based on the Gradient of One Velocity Component”, J. Math. Anal. Appl., 437:1 (2016), 474–484  crossref  mathscinet  zmath  isi
    214. Ye Zh., “Remarks on the Regularity Criterion To the Navier-Stokes Equations Via the Gradient of One Velocity Component”, J. Math. Anal. Appl., 435:2 (2016), 1623–1633  crossref  mathscinet  zmath  isi
    215. Han P., “Long-Time Behavior For Navier-Stokes Flows in a Two-Dimensional Exterior Domain”, J. Funct. Anal., 270:3 (2016), 1091–1152  crossref  mathscinet  zmath  isi
    216. T. Barker, “Local boundary regularity for the Navier–Stokes equations in nonendpoint borderline Lorentz spaces”, Краевые задачи математической физики и смежные вопросы теории функций. 45, Посвящается юбилею Григория Александровича СЕРЕГИНА, Зап. научн. сем. ПОМИ, 444, ПОМИ, СПб., 2016, 15–46  mathnet  mathscinet
    217. Burczak J., Zajazkowski W.M., Nonlinear Anal.-Real World Appl., 31 (2016), 513–532  crossref  mathscinet  zmath  isi  scopus
    218. Liu Q., “On weak–strong uniqueness of solutions to the generalized incompressible Navier–Stokes equations”, Comput. Math. Appl., 72:3 (2016), 675–686  crossref  mathscinet  zmath  isi  scopus
    219. Tran Ch.V., Yu X., “Logarithmic improvement of regularity criteria for the Navier–Stokes equations in terms of pressure”, Appl. Math. Lett., 58 (2016), 62–68  crossref  mathscinet  zmath  isi  elib  scopus
    220. Huang T., “Regularity and uniqueness for a class of solutions to the hydrodynamic flow of nematic liquid crystals”, Anal. Appl., 14:4 (2016), 523–536  crossref  mathscinet  zmath  isi  scopus
    221. Gala S., Ragusa M.A., “Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices”, Appl. Anal., 95:6 (2016), 1271–1279  crossref  mathscinet  zmath  isi  scopus
    222. Yamazaki K., “On the three-dimensional magnetohydrodynamics system in scaling-invariant spaces”, Bull. Sci. Math., 140:5 (2016), 575–614  crossref  mathscinet  zmath  isi  scopus
    223. Wang L., “Uniqueness of self-similar shrinkers with asymptotically cylindrical ends”, J. Reine Angew. Math., 715 (2016), 207–230  crossref  mathscinet  zmath  isi  elib  scopus
    224. Hsu P.-Y., Notsu H., Yoneda T., “A local analysis of the axisymmetric Navier–Stokes flow near a saddle point and no-slip flat boundary”, J. Fluid Mech., 794 (2016), 444–459  crossref  mathscinet  isi  scopus
    225. Ohkitani K., “Study of the Navier–Stokes regularity problem with critical norms”, Fluid Dyn. Res., 48:2 (2016), 021401  crossref  mathscinet  isi  elib  scopus
    226. Gibbon J.D., “High–low frequency slaving and regularity issues in the 3D Navier–Stokes equations”, IMA J. Appl. Math., 81:2 (2016), 308–320  crossref  mathscinet  zmath  isi  scopus
    227. Gallagher I., Koch G.S., Planchon F., “Blow-up of Critical Besov Norms at a Potential Navier–Stokes Singularity”, Commun. Math. Phys., 343:1 (2016), 39–82  crossref  mathscinet  zmath  isi  scopus
    228. Yamazaki K., “Regularity Criteria of the Three-Dimensional Mhd System Involving One Velocity and One Vorticity Component”, Nonlinear Anal.-Theory Methods Appl., 135 (2016), 73–83  crossref  mathscinet  zmath  isi  scopus
    229. Bae H., Cannone M., “Log-Lipschitz Regularity of the 3D Navier-Stokes Equations”, Nonlinear Anal.-Theory Methods Appl., 135 (2016), 223–235  crossref  mathscinet  zmath  isi  scopus
    230. Shi J., Zhang Q., “Remarks on the uniqueness of weak solution for the 3D viscous magneto-hydrodynamics equations in
      $${B^{1}_{\infty,\infty}}$$
      B ∞ , ∞ 1”, Z. Angew. Math. Phys., 67:1 (2016), UNSP 7  crossref  mathscinet  isi  scopus
    231. Gala S., Ragusa M.A., “A regularity criterion for 3D micropolar fluid flows in terms of one partial derivative of the velocity”, Ann. Pol. Math., 116:3 (2016), 217–228  crossref  mathscinet  zmath  isi  scopus
    232. Zhang Z., Yang X., “Navier–Stokes equations with vorticity in Besov spaces of negative regular indices”, J. Math. Anal. Appl., 440:1 (2016), 415–419  crossref  mathscinet  zmath  isi  scopus
    233. Tao T., “Finite time blowup for an averaged three-dimensional Navier-Stokes equation”, J. Am. Math. Soc., 29:3 (2016), 601–674  crossref  mathscinet  zmath  isi  elib  scopus
    234. Gala S., Ragusa M.A., “A new regularity criterion for the Navier-Stokes equations in terms of the two components of the velocity”, Electron. J. Qual. Theory Differ., 2016, no. 26, 1–9  crossref  mathscinet  isi  scopus
    235. Grujic Z., “Vortex stretching and anisotropic diffusion in the 3D Navier-Stokes equations”, Recent Advances in Partial Differential Equations and Applications, Contemporary Mathematics, 666, eds. Radulescu V., Sequeira A., Solonnikov V., Amer Mathematical Soc, 2016, 239–251  crossref  mathscinet  zmath  isi
    236. Chemin J.-Y., Zhang P., “On the critical one component regularity for 3-D Navier-Stokes system”, Ann. Sci. Ec. Norm. Super., 49:1 (2016), 131–167  crossref  mathscinet  zmath  isi
    237. Ye Zh., “Remarks on the Regularity Criterion To the 3D Navier-Stokes Equations Via One Velocity Component”, Differ. Integral Equ., 29:9-10 (2016), 957–976  mathscinet  zmath  isi
    238. Wang Ya., Wu G., Zhou D., “Refined regularity class of suitable weak solutions to the 3D magnetohydrodynamics equations with an application”, Z. Angew. Math. Phys., 67:6 (2016), 136  crossref  mathscinet  isi  elib  scopus
    239. Zhang Z., Zhou Y., Comput. Math. Appl., 72:9 (2016), 2311–2314  crossref  mathscinet  isi  scopus
    240. Wu J., Zhang L., “The Landis–Oleinik conjecture in the exterior domain”, Adv. Math., 302 (2016), 190–230  crossref  mathscinet  zmath  isi  scopus
    241. Tran Ch.V., Yu X., “Pressure moderation and effective pressure in Navier–Stokes flows”, Nonlinearity, 29:10 (2016), 2990–3005  crossref  mathscinet  zmath  isi  elib  scopus
    242. Bae H.-O., Kang K., Kim M., “Local Regularity Criteria of the Navier-Stokes Equations With Slip Boundary Conditions”, J. Korean. Math. Soc., 53:3 (2016), 597–621  crossref  mathscinet  zmath  isi  elib  scopus
    243. Yamazaki K., “Regularity criteria of the 4D Navier–Stokes equations involving two velocity field components”, Commun. Math. Sci., 14:8 (2016), 2229–2252  crossref  mathscinet  zmath  isi
    244. Zhang Z., “Remarks on regularity criteria for the Navier–Stokes equations with axisymmetric data”, Ann. Pol. Math., 117:2 (2016), 181–196  crossref  mathscinet  zmath  isi  scopus
    245. Liu X.-G., Min J., Wang K., Zhang X., “Serrin's regularity results for the incompressible liquid crystals system”, Discret. Contin. Dyn. Syst., 36:10 (2016), 5579–5594  crossref  mathscinet  zmath  isi  scopus
    246. Chemin J.-Y., Zhang P., Zhang Zh., “On the Critical One Component Regularity for 3-D Navier-Stokes System: General Case”, Arch. Ration. Mech. Anal., 224:3 (2017), 871–905  crossref  mathscinet  zmath  isi  scopus
    247. Seregin G., Sverak V., Nonlinear Anal.-Theory Methods Appl., 154:SI (2017), 269–296  crossref  mathscinet  zmath  isi  scopus
    248. Wang WenDong, Zhang ZhiFei, “Blow-up of critical norms for the 3-D Navier-Stokes equations”, Sci. China-Math., 60:4 (2017), 637–650  crossref  mathscinet  isi  scopus
    249. Kukavica I., Rusin W., Ziane M., “An Anisotropic Partial Regularity Criterion for the Navier–Stokes Equations”, J. Math. Fluid Mech., 19:1 (2017), 123–133  crossref  mathscinet  isi  scopus
    250. Hmidi T., Li D., “Small $\dot{B}^{-1}_{\infty , \infty}$ implies regularity”, Dyn. Partial Differ. Equ., 14:1 (2017), 1–4  crossref  mathscinet  zmath  isi
    251. Fan J., Ozawa T., “Regularity Criteria For Navier-Stokes and Related System”, Differ. Integral Equ., 30:1-2 (2017), 101–114  mathscinet  isi
    252. Pierfelice V., “The Incompressible Navier–Stokes Equations on Non-compact Manifolds”, J. Geom. Anal., 27:1 (2017), 577–617  crossref  mathscinet  zmath  isi  scopus
    253. Tran Ch.V., Yu X., “Note on Prodi-Serrin-Ladyzhenskaya type regularity criteria for the Navier-Stokes equations”, J. Math. Phys., 58:1 (2017), 011501  crossref  mathscinet  zmath  isi  scopus
    254. Lai B., Lin J., Wang Ch., “Forward Self-Similar Solutions to the Viscoelastic Navier–Stokes Equation with Damping”, SIAM J. Math. Anal., 49:1 (2017), 501–529  crossref  mathscinet  zmath  isi  scopus
    255. Ohkitani K., “Characterization of blowup for the Navier-Stokes equations using vector potentials”, AIP Adv., 7:1 (2017), 015211  crossref  isi
    256. Tran Ch.V., Yu X., “Regularity of Navier–Stokes flows with bounds for the pressure”, Appl. Math. Lett., 67 (2017), 21–27  crossref  mathscinet  zmath  isi  scopus
    257. Chae D., Lee J., “On the geometric regularity conditions for the 3D Navier–Stokes equations”, Nonlinear Anal.-Theory Methods Appl., 151 (2017), 265–273  crossref  zmath  isi  scopus
    258. Braz e Silva P., Melo W.G., Zingano P.R., “Lower Bounds on Blow-up of Solutions for Magneto-Micropolar Fluid Systems in Homogeneous Sobolev Spaces”, Acta Appl. Math., 147:1 (2017), 1–17  crossref  mathscinet  isi  scopus
    259. Ohkitani K., “Near-invariance under dynamic scaling for Navier–Stokes equations in critical spaces: a probabilistic approach to regularity problems”, J. Phys. A-Math. Theor., 50:4 (2017), 045501  crossref  mathscinet  zmath  isi  scopus
    260. Bradshaw Z., Grujic Z., “Frequency Localized Regularity Criteria for the 3D Navier–Stokes Equations”, Arch. Ration. Mech. Anal., 224:1 (2017), 125–133  crossref  mathscinet  zmath  isi  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Просмотров:
    Эта страница:758
    Полный текст:231
    Литература:73
    Первая стр.:5

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017