|
Эта публикация цитируется в 308 научных статьях (всего в 308 статьях)
$L_{3,\infty}$-решения уравнений Навье–Стокса и обратная единственность
Л. Искауриазаa, Г. А. Серёгинb, В. Шверакc a Universidad del Pais Vasco-Euskal Herriko Unibertsitatea, Dipartimento di Matematicas
b Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН
c University of Minnesota, School of Mathematics
Аннотация:
Показано, что $L_{3,\infty}$-решения задачи Коши для трехмерных уравнений Навье–Стокса являются гладкими.
Библиография: 46 названий.
DOI:
https://doi.org/10.4213/rm609
Полный текст:
PDF файл (480 kB)
Список литературы:
PDF файл
HTML файл
Англоязычная версия:
Russian Mathematical Surveys, 2003, 58:2, 211–250
Реферативные базы данных:
УДК:
517.9
MSC: Primary 35Q30; Secondary 35B65, 35D10, 35A05, 35K05, 35K60, 35B60, 76D05 Поступила в редакцию: 15.02.2003
Образец цитирования:
Л. Искауриаза, Г. А. Серëгин, В. Шверак, “$L_{3,\infty}$-решения уравнений Навье–Стокса и обратная единственность”, УМН, 58:2(350) (2003), 3–44; Russian Math. Surveys, 58:2 (2003), 211–250
Цитирование в формате AMSBIB
\RBibitem{EscSerSve03}
\by Л.~Искауриаза, Г.~А.~Сер\"eгин, В.~Шверак
\paper $L_{3,\infty}$-решения уравнений Навье--Стокса и обратная единственность
\jour УМН
\yr 2003
\vol 58
\issue 2(350)
\pages 3--44
\mathnet{http://mi.mathnet.ru/umn609}
\crossref{https://doi.org/10.4213/rm609}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1992563}
\zmath{https://zbmath.org/?q=an:1064.35134}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2003RuMaS..58..211E}
\transl
\jour Russian Math. Surveys
\yr 2003
\vol 58
\issue 2
\pages 211--250
\crossref{https://doi.org/10.1070/RM2003v058n02ABEH000609}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000184540100001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0042154193}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/umn609https://doi.org/10.4213/rm609 http://mi.mathnet.ru/rus/umn/v58/i2/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
G. A. Seregin, V. Šverak, “On smoothness of suitable weak solutions to the Navier–Stokes equations”, Краевые задачи математической физики и смежные вопросы теории функций. 34, Зап. научн. сем. ПОМИ, 306, ПОМИ, СПб., 2003, 186–198
; J. Math. Sci. (N. Y.), 130:4 (2005), 4884–4892 -
G. A. Seregin, “Remarks on regularity of weak solutions to the Navier–Stokes equations near the boundary”, Краевые задачи математической физики и смежные вопросы теории функций. 33, Зап. научн. сем. ПОМИ, 295, ПОМИ, СПб., 2003, 168–179
; J. Math. Sci. (N. Y.), 127:2 (2005), 1915–1922 -
О. А. Ладыженская, “Шестая проблема тысячелетия: уравнения Навье–Стокса, существование и гладкость”, УМН, 58:2(350) (2003), 45–78
; O. A. Ladyzhenskaya, “Sixth problem of the millennium: Navier–Stokes equations, existence and smoothness”, Russian Math. Surveys, 58:2 (2003), 251–286 -
Berselli L.C., Galdi G.P., “On the space-time regularity of $C(0,T;L^n)$-very weak solutions to the Navier–Stokes equations”, Nonlinear Anal., 58:5-6 (2004), 703–717
-
Kim H., Kozono H., “Interior regularity criteria in weak spaces for the Navier–Stokes equations”, Manuscripta Math., 115:1 (2004), 85–100
-
G. A. Seregin, T. N. Shilkin, V. A. Solonnikov, “Boundary partial regularity for the Navier–Stokes equations”, Краевые задачи математической физики и смежные вопросы теории функций. 35, Зап. научн. сем. ПОМИ, 310, ПОМИ, СПб., 2004, 158–190
; J. Math. Sci. (N. Y.), 132:3 (2006), 339–358 -
Seregin G., “On smoothness of $L_{3,\infty}$-solutions to the Navier–Stokes equations up to boundary”, Math. Ann., 332:1 (2005), 219–238
-
Feireisl E., Novotný A., Petzeltová H., “On a class of physically admissible variational solutions to the Navier–Stokes-Fourier system”, Z. Anal. Anwendungen, 24:1 (2005), 75–101
-
Kang K., Lee J., “On regularity criteria in conjunction with the pressure of the Navier–Stokes equations”, Int. Math. Res. Not., 2006, 80762, 25 pp.
-
W. Zajączkowski, G. A. Seregin, “A sufficient condition of local regularity for the Navier–Stokes equations”, Краевые задачи математической физики и смежные вопросы теории функций. 37, Зап. научн. сем. ПОМИ, 336, ПОМИ, СПб., 2006, 46–54
; J. Math. Sci. (N. Y.), 143:2 (2007), 2869–2874 -
A. Mahalov, B. Nicolaenko, T. N. Shilkin, “$L_{3,\infty}$-solutions to the MHD equations”, Краевые задачи математической физики и смежные вопросы теории функций. 37, Зап. научн. сем. ПОМИ, 336, ПОМИ, СПб., 2006, 112–132
; J. Math. Sci. (N. Y.), 143:2 (2007), 2911–2923 -
A. S. Mikhailov, T. N. Shilkin, “$L_{3,\infty}$-solutions to the 3D-Navier–Stokes system in the domain with a curved boundary”, Краевые задачи математической физики и смежные вопросы теории функций. 37, Зап. научн. сем. ПОМИ, 336, ПОМИ, СПб., 2006, 133–152
; J. Math. Sci. (N. Y.), 143:2 (2007), 2924–2935 -
G. A. Seregin, “Estimates of suitable weak solutions to the Navier–Stokes equations in critical Morrey spaces”, Краевые задачи математической физики и смежные вопросы теории функций. 37, Зап. научн. сем. ПОМИ, 336, ПОМИ, СПб., 2006, 199–210
; J. Math. Sci. (N. Y.), 143:2 (2007), 2961–2968 -
Г. А. Серегин, “Новая версия условия Ладыженской–Проди–Серрина”, Алгебра и анализ, 18:1 (2006), 124–143
; G. A. Seregin, “New version of the Ladyzhenskaya–Prodi–Serrin condition”, St. Petersburg Math. J., 18:1 (2007), 89–103 -
Zhang Qi, “Local estimates on two linear parabolic equations with singular coefficients”, Pacific J. Math., 223:2 (2006), 367–396
-
Escauriaza L., Kenig C.E., Ponce G., Vega L., “Decay at infinity of caloric functions within characteristic hyperplanes”, Math. Res. Lett., 13:2-3 (2006), 441–453
-
Germain P., “Multipliers, paramultipliers, and weak-strong uniqueness for the Navier–Stokes equations”, J. Differential Equations, 226:2 (2006), 373–428
-
Gustafson S., Kang Kyungkeun, Tsai Tai-Peng, “Regularity criteria for suitable weak solutions of the Navier–Stokes equations near the boundary”, J. Differential Equations, 226:2 (2006), 594–618
-
Kukavica I., “Pressure integrability conditions for uniqueness of mild solutions of the Navier–Stokes system”, J. Differential Equations, 223:2 (2006), 427–441
-
Kukavica I., Ziane M., “One component regularity for the Navier–Stokes equations”, Nonlinearity, 19:2 (2006), 453–469
-
Grujić Z., Zhang Qi S., “Space-time localization of a class of geometric criteria for preventing blow-up in the 3D NSE”, Comm. Math. Phys., 262:3 (2006), 555–564
-
Zhou Yong, “On a regularity criterion in terms of the gradient of pressure for the Navier–Stokes equations in $\mathbb R^N$”, Z. Angew. Math. Phys., 57:3 (2006), 384–392
-
Zhou Yong, “On regularity criteria in terms of pressure for the Navier–Stokes equations in $\mathbb R^3$”, Proc. Amer. Math. Soc., 134:1 (2006), 149–156
-
Dongho Chae, “Nonexistence of asymptotically self-similar singularities in the Euler and the Navier–Stokes equations”, Math Ann, 338:2 (2007), 435
-
Г. А. Серëгин, “О локальной регулярности подходящих слабых решений уравнений Навье–Стокса”, УМН, 62:3(375) (2007), 149–168
; G. A. Seregin, “Local regularity for suitable weak solutions of the Navier–Stokes equations”, Russian Math. Surveys, 62:3 (2007), 595–614 -
Chae Dongho, Kang Kyungkeun, Lee Jihoon, “On the interior regularity of suitable weak solutions to the Navier–Stokes equations”, Comm. Partial Differential Equations, 32:7-9 (2007), 1189–1207
-
Chae Dongho, “On the regularity conditions for the Navier–Stokes and related equations”, Rev. Mat. Iberoam., 23:1 (2007), 371–384
-
Seregin G., Zajaczkowski W., “A sufficient condition of regularity for axially symmetric solutions to the Navier–Stokes equations”, SIAM J. Math. Anal., 39:2 (2007), 669–685
-
Kukavica I., Ziane M., “Navier–Stokes equations with regularity in one direction”, J. Math. Phys., 48:6 (2007), 065203, 10 pp.
-
Struwe M., “On a Serrin-type regularity criterion for the Navier–Stokes equations in terms of the pressure”, J. Math. Fluid Mech., 9:2 (2007), 235–242
-
Hou Th.Y., Li R., “Nonexistence of locally self-similar blow-up for the 3D incompressible Navier–Stokes equations”, Discrete Contin. Dyn. Syst., 18:4 (2007), 637–642
-
Gustafson S., Kang Kyungkeun, Tsai Tai-Peng, “Interior regularity criteria for suitable weak solutions of the Navier–Stokes equations”, Comm. Math. Phys., 273:1 (2007), 161–176
-
Seregin G., “Navier–Stokes equations: almost $L_{3,\infty}$-case”, J. Math. Fluid Mech., 9:1 (2007), 34–43
-
Tao T., “A quantitative formulation of the global regularity problem for the periodic Navier–Stokes equation”, Dyn. Partial Differ. Equ., 4:4 (2007), 293–302
-
Vasseur A.F., “A new proof of partial regularity of solutions to Navier–Stokes equations”, NoDEA Nonlinear Differential Equations Appl., 14:5-6 (2007), 753–785
-
Colliander J., “On blowup solutions of NLS with low regularity initial data”, Harmonic Analysis, Partial Differential Equations, and Related Topics, Contemporary Mathematics Series, 428, 2007, 43–50
-
Kenig C.E., “Some recent applications of unique continuation”, Recent Developments in Nonlinear Partial Differential Equations, Contemporary Mathematics Series, 439, 2007, 25–56
-
Suzuki T., “On partial regularity of suitable weak solutions to the Navier–Stokes equations in unbounded domains”, Manuscripta Math., 125:4 (2008), 471–493
-
Wang Changyou, “Heat flow of harmonic maps whose gradients belong to $L^n_xL^\infty_t$”, Arch. Ration. Mech. Anal., 188:2 (2008), 351–369
-
Chen Qionglei, Miao Changxing, Zhang Zhifei, “On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations”, Comm. Math. Phys., 284:3 (2008), 919–930
-
Fan J., Ozawa T., “Regularity criterion for weak solutions to the Navier–Stokes equations in terms of the gradient of the pressure”, J. Inequal. Appl., 2008, 412678, 6 pp.
-
Costin O., Luo G., Tanveer S., “An integral equation approach to smooth 3D Navier–Stokes solution”, Physica Scripta, T132 (2008), 014040, 9 pp.
-
Cao Chongsheng, Titi E.S., “Regularity criteria for the three-dimensional Navier–Stokes equations”, Indiana Univ. Math. J., 57:6 (2008), 2643–2661
-
Chou Kai-Seng, Du Shi-Zhong, “Estimates on the Hausdorff dimension of the rupture set of a thin film”, SIAM J. Math. Anal., 40:2 (2008), 790–823
-
Constantin P., “Euler and Navier–Stokes equations”, Publ. Mat., 52:2 (2008), 235–265
-
Merle F., Raphaël P., “Blow up of the critical norm for some radial $L^2$ super critical nonlinear Schrödinger equations”, Amer. J. Math., 130:4 (2008), 945–978
-
Bae Hyeong-Ohk, Choe Hi Jun, Jin Bum Ja, “Pressure representation and boundary regularity of the Navier–Stokes equations with slip boundary condition”, J. Differential Equations, 244:11 (2008), 2741–2763
-
Fan Jishan, Jiang Song, Ni Guoxi, “On regularity criteria for the $n$-dimensional Navier–Stokes equations in terms of the pressure”, J. Differential Equations, 244:11 (2008), 2963–2979
-
Cai Xiaojing, Jiu Quansen, “Weak and strong solutions for the incompressible Navier–Stokes equations with damping”, J. Math. Anal. Appl., 343:2 (2008), 799–809
-
Mahalov A., Nicolaenko B., Seregin G., “New sufficient conditions of local regularity for solutions to the Navier–Stokes equations”, J. Math. Fluid Mech., 10:1 (2008), 106–125
-
Hoff D., Tsyganov E., “Time analyticity and backward uniqueness of weak solutions of the Navier–Stokes equations of multidimensional compressible flow”, J. Differential Equations, 245:10 (2008), 3068–3094
-
Hou Thomas Y., Lei Zhen, Li Congming, “Global regularity of the 3D axi-symmetric Navier–Stokes equations with anisotropic data”, Comm. Partial Differential Equations, 33:9 (2008), 1622–1637
-
Kenig C.E., “The global behavior of solutions to critical nonlinear dispersive and wave equations”, Harmonic Analysis and Partial Differential Equations, Contemporary Mathematics, 505, 2008, 53–60
-
Hou Thomas Y., Lei Zhen, “On the stabilizing effect of convection in three-dimensional incompressible flows”, Comm. Pure Appl. Math., 62:4 (2009), 501–564
-
Zhou Yong, Fan Jishan, “Regularity criteria for the viscous Camassa-Holm equations”, Int. Math. Res. Not. IMRN, 2009, no. 13, 2508–2518
-
Fan Jishan, Ozawa Tohru, “Logarithmically improved regularity criteria for Navier–Stokes and related equations”, Math. Methods Appl. Sci., 32:17 (2009), 2309–2318
-
Yong Yan, Jiu Quan Sen, “Energy equality and uniqueness of weak solutions to MHD equations in $L^\infty(0,T;L^n(\Omega))$”, Acta Math. Sin. (Engl. Ser.), 25:5 (2009), 803–814
-
Robinson J.C., Sadowski W., “A criterion for uniqueness of Lagrangian trajectories for weak solutions of the 3D Navier–Stokes equations”, Comm. Math. Phys., 290:1 (2009), 15–22
-
Berselli L.C., “Some criteria concerning the vorticity and the problem of global regularity for the 3D Navier–Stokes equations”, Ann. Univ. Ferrara, 55:2 (2009), 209–224
-
V. A. Vyalov, “On the local smoothness of weak solutions to the MHD system”, Краевые задачи математической физики и смежные вопросы теории функций. 40, Зап. научн. сем. ПОМИ, 370, ПОМИ, СПб., 2009, 5–21
; J. Math. Sci. (N. Y.), 166:1 (2010), 1–10 -
A. Mikhaylov, “Local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary”, Краевые задачи математической физики и смежные вопросы теории функций. 40, Зап. научн. сем. ПОМИ, 370, ПОМИ, СПб., 2009, 73–93
; J. Math. Sci. (N. Y.), 166:1 (2010), 40–52 -
Chae Dongho, “On the behaviors of solutions near possible blow-up time in the incompressible Euler and related equations”, Comm. Partial Differential Equations, 34:10 (2009), 1265–1286
-
Chen Qionglei, Miao Changxing, Zhang Zhifei, “On the uniqueness of weak solutions for the 3D Navier–Stokes equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26:6 (2009), 2165–2180
-
Dong Hongjie, Du Dapeng, “The Navier–Stokes equations in the critical Lebesgue space”, Comm. Math. Phys., 292:3 (2009), 811–827
-
Dong Hongjie, Pavlović N., “A regularity criterion for the dissipative quasi-geostrophic equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26:5 (2009), 1607–1619
-
Cortissoz J., “Some elementary estimates for the Navier–Stokes system”, Proc. Amer. Math. Soc., 137:10 (2009), 3343–3353
-
Fan J., Ozawa T., “Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model”, Kinet. Relat. Models, 2:2 (2009), 293–305
-
Fan Jishan, Gao Hongjun, “Regularity conditions for the 3D Navier–Stokes equations”, Quart. Appl. Math., 67:1 (2009), 195–199
-
Zhou Yong, Gala S., “Logarithmically improved regularity criteria for the Navier–Stokes equations in multiplier spaces”, J. Math. Anal. Appl., 356:2 (2009), 498–501
-
Galaktionov V.A., Mitidieri E., Pohozaev S.I., “On global solutions and blow-up for Kuramoto-Sivashinsky-type models, and well-posed Burnett equations”, Nonlinear Anal., 70:8 (2009), 2930–2952
-
Seregin G., Šverák V., “On type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations”, Comm. Partial Differential Equations, 34:2 (2009), 171–201
-
Doering Ch.R., “The 3D Navier–Stokes Problem”, Annu. Rev. Fluid Mech., 41 (2009), 109–128
-
Koch G., Nadirashvili N., Seregin G.A., Šverá k V., “Liouville theorems for the Navier–Stokes equations and applications”, Acta Math., 203:1 (2009), 83–105
-
Wang Keyan, “On global regularity of incompressible Navier–Stokes equations in $\mathbb R^3$”, Commun. Pure Appl. Anal., 8:3 (2009), 1067–1072
-
Hou Thomas Y., Lei Zhen, “On the partial regularity of a 3D model of the Navier–Stokes equ”, Comm. Math. Phys., 287:2 (2009), 589–612
-
Vasseur A., “Regularity criterion for 3d Navier–Stokes equations in terms of the direction of the velocity”, Appl. Math., 54:1 (2009), 47–52
-
Fan J., Gao H., “Two Component Regularity for the Navier–Stokes Equations”, Electronic Journal of Differential Equations, 2009, 121
-
Gala S., “A Remark on the Regularity for the 3D Navier–Stokes Equations in Terms of the Two Components of the Velocity”, Electronic Journal of Differential Equations, 2009, 148
-
Cheskidov A., Shvydkoy R., “The regularity of weak solutions of the 3D Navier–Stokes equations in $B_{\infty,\infty}^{-1}$”, Arch. Rational Mech. Anal., 195:1 (2010), 159–169
-
Grujić Z., Guberović R., “Localization of Analytic Regularity Criteria on the Vorticity and Balance Between the Vorticity Magnitude and Coherence of the Vorticity Direction in the 3D NSE”, Comm. Math. Phys., 2010
-
Cao Chongsheng, “Sufficient conditions for the regularity to the 3D Navier–Stokes equations”, Discrete Contin. Dyn. Syst., 26:4 (2010), 1141–1151
-
Kukavica I., “On regularity for the Navier–Stokes equations in Morrey spaces”, Discrete Contin. Dyn. Syst., 26:4 (2010), 1319–1328
-
Kim Jaewoo, Kim Myeonghyeon, “Local regularity of the Navier–Stokes equations near the curved boundary”, J. Math. Anal. Appl., 363:1 (2010), 161–173
-
Cao Chongsheng, Wu Jiahong., “Two regularity criteria for the 3D MHD equations”, J. Differ. Equations, 248:9 (2010), 2263–2274
-
Feireisl E., “Mathematical theory of viscous fluids: Retrospective and future perspectives”, Discrete Contin. Dyn. Syst., 27:2 (2010), 533–555
-
Jae-Myoung Kim, “On regularity criteria of the Navier–Stokes equations in bounded domains”, J Math Phys (N Y ), 51:5 (2010), 053102
-
Kyungkeun Kang, Jihoon Lee, “On the behaviour of Navier–Stokes equations near a possible singular point”, Nonlinearity, 23:12 (2010), 3187
-
V. Vyalov, T. Shilkin, “On the boundary regularity of weak solutions to the MHD system”, Краевые задачи математической физики и смежные вопросы теории функций. 41, Зап. научн. сем. ПОМИ, 385, ПОМИ, СПб., 2010, 18–53
; J. Math. Sci. (N. Y.), 178:3 (2011), 243–264 -
A. S. Mikhaylov, “On local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary”, Краевые задачи математической физики и смежные вопросы теории функций. 41, Зап. научн. сем. ПОМИ, 385, ПОМИ, СПб., 2010, 83–97
; J. Math. Sci. (N. Y.), 178:3 (2011), 282–291 -
Lin F., Wang Ch., “On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals”, Chinese Annals of Mathematics Series B, 31:6 (2010), 921–938
-
Wang Shu, “On a New 3D Model for Incompressible Euler and Navier–Stokes Equations”, Acta Mathematica Scientia, 30:6 (2010), 2089–2102
-
Cai Zh., Fan J., Zhai J., “Regularity Criteria in Weak Spaces for 3-Dimensional Navier–Stokes Equations in Terms of the Pressure”, Differential and Integral Equations, 23:11–12 (2010), 1023–1033
-
Sugiyama Y., “epsilon-Regularity theorem and its application to the blow-up solutions of Keller-Segel systems in higher dimensions”, Journal of Mathematical Analysis and Applications, 364:1 (2010), 51–70
-
Gibbon J.D., “Regularity and singularity in solutions of the three-dimensional Navier–Stokes equations”, Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 466:2121 (2010), 2587–2604
-
He Cheng, Wang Yun, “Limiting case for the regularity criterion of the Navier–Stokes equations and the magnetohydrodynamic equations”, Science China-Mathematics, 53:7 (2010), 1767–1774
-
Yuan J., “Existence theorem and regularity criteria for the generalized MHD equations”, Nonlinear Analysis-Real World Applications, 11:3 (2010), 1640–1649
-
Qiu H., Du Y., Yao Zheng'an, “A blow-up criterion for 3D Boussinesq equations in Besov spaces”, Nonlinear Analysis-Theory Methods & Applications, 73:3 (2010), 806–815
-
Chae D., “On the Regularity Conditions of Suitable Weak Solutions of the 3D Navier–Stokes Equations”, Journal of Mathematical Fluid Mechanics, 12:2 (2010), 171–180
-
Killip R., Visan M., “Energy-Supercritical NLS: Critical H-S-Bounds Imply Scattering”, Communications in Partial Differential Equations, 35:6 (2010), 945–987
-
Qiu H., Du Y., Yao Zheng'an, “Serrin-type blow-up criteria for 3D Boussinesq equations”, Applicable Analysis, 89:10 (2010), 1603–1613
-
W. Zajączkowski, “A regularity criterion for axially symmetric solutions to the Navier–Stokes equations”, Краевые задачи математической физики и смежные вопросы теории функций. 41, Зап. научн. сем. ПОМИ, 385, ПОМИ, СПб., 2010, 54–68
; J. Math. Sci. (N. Y.), 178:3 (2011), 265–273 -
G. A. Seregin, “Necessary conditions of potential blow up for Navier–Stokes equations”, Краевые задачи математической физики и смежные вопросы теории функций. 41, Зап. научн. сем. ПОМИ, 385, ПОМИ, СПб., 2010, 187–199
; J. Math. Sci. (N. Y.), 178:3 (2011), 345–352 -
Han P., “Regularity and decay properties of weak solutions to Navier–Stokes equations in general domains”, Portugaliae Mathematica, 67:1 (2010), 57–74
-
Gala S., “Regularity for 3D Navier–Stokes Equations in Terms of Two Components of the Vorticity”, Electronic Journal of Differential Equations, 2010, 153
-
Koch G.S., “Profile Decompositions for Critical Lebesgue and Besov Space Embeddings”, Indiana Univ Math J, 59:5 (2010), 1801–1830
-
Kukavica I., “Partial regularity for the Navier–Stokes equations with a force in a Morrey space”, Journal of Mathematical Analysis and Applications, 374:2 (2011), 573–584
-
Yoshikazu Giga, Hideyuki Miura, “On Vorticity Directions near Singularities for the Navier–Stokes Flows with Infinite Energy”, Commun. Math. Phys, 2011
-
Jean-Yves Chemin, Isabelle Gallagher, Marius Paicu, “Global regularity for some classes of large solutions to the Navier–Stokes equations”, Ann. Math, 173:2 (2011), 983
-
Qian Zhang, “On the uniqueness of weak solutions for the 3D viscous magneto-hydrodynamic equations”, Nonlinear Analysis: Theory, Methods & Applications, 2011
-
Chongsheng Cao, Edriss S. Titi, “Global Regularity Criterion for the 3D Navier–Stokes Equations Involving One Entry of the Velocity Gradient Tensor”, Arch Rational Mech Anal, 2011
-
Zujin Zhang, Xinglong Wu, Ming Lu, “On the uniqueness of strong solution to the incompressible Navier–Stokes equations with damping”, Journal of Mathematical Analysis and Applications, 377:1 (2011), 414
-
James C. Robinson, Witold Sadowski, “On the Dimension of the Singular Set of Solutions to the Navier–Stokes Equations”, Commun. Math. Phys, 2011
-
G. Seregin, “A Certain Necessary Condition of Potential Blow up for Navier–Stokes Equations”, Commun. Math. Phys, 2011
-
Fan J., Jiang S., Nakamura G., Zhou Y., “Logarithmically Improved Regularity Criteria for the Navier–Stokes and MHD Equations”, J Math Fluid Mech, 13:4 (2011), 557–571
-
Gala S., “On the regularity criterion of strong solutions to the 3D Boussinesq equations”, Appl Anal, 90:12 (2011), 1829–1835
-
Kenig C., “Critical non-linear dispersive equations: global existence, scattering, blow-up and universal profiles”, Jpn J Math, 6:2 (2011), 121–141
-
Gala S., “A remark on the logarithmically improved regularity criterion for the micropolar fluid equations in terms of the pressure”, Math Methods Appl Sci, 34:16 (2011), 1945–1953
-
Kenig C.E., Merle F., “Radial Solutions To Energy Supercritical Wave Equations in Odd Dimensions”, Discrete and Continuous Dynamical Systems, 31:4 (2011), 1365–1381
-
Lei Zh., Zhang Q.S., “A Liouville theorem for the axially-symmetric Navier–Stokes equations”, J Funct Anal, 261:8 (2011), 2323–2345
-
Kenig C.E., Merle F., “Nondispersive Radial Solutions To Energy Supercritical Non-Linear Wave Equations, With Applications”, Amer J Math, 133:4 (2011), 1029–1065
-
Costin O., Luo G., Tanveer S., “Integral Formulation of 3D Navier–Stokes and Longer Time Existence of Smooth Solutions”, Commun Contemp Math, 13:3 (2011), 407–462
-
Kenig C.E., Koch G.S., “An alternative approach to regularity for the Navier–Stokes equations in critical spaces”, Ann Inst H Poincaré Anal Non Linéaire, 28:2 (2011), 159–187
-
Fan J., Jiang S., Nakamura G., “On logarithmically improved regularity criteria for the Navier–Stokes equations in R-n”, IMA J Appl Math, 76:2 (2011), 298–311
-
Bjorland C., Vasseur A., “Weak in Space, Log in Time Improvement of the LadyA3/4enskaja-Prodi-Serrin Criteria”, J Math Fluid Mech, 13:2 (2011), 259–269
-
Eduard Feireisl, Antonín Novotný, “Weak–Strong Uniqueness Property for the Full Navier–Stokes–Fourier System”, Arch Rational Mech Anal, 2012
-
Wendong Wang, Zhifei Zhang, “Limiting case for the regularity criterion to the 3-D Magneto-hydrodynamics equations”, Journal of Differential Equations, 2012
-
Tomoyuki Suzuki, “A remark on the regularity of weak solutions to the Navier–Stokes equations in terms of the pressure in Lorentz spaces”, Nonlinear Analysis: Theory, Methods & Applications, 2012
-
Cheng He, Daoguo Zhou, “The existence, uniqueness, and regularity for an incompressible Newtonian flow with intrinsic degree of freedom”, Math. Meth. Appl. Sci, 2012, n/a
-
Pigong Han, Cheng He, “Partial regularity of suitable weak solutions to the four-dimensional incompressible magneto-hydrodynamic equations”, Math. Meth. Appl. Sci, 2012, n/a
-
Pata V., “On the Regularity of Solutions To the Navier–Stokes Equations”, Commun Pure Appl Anal, 11:2 (2012), 747–761
-
Aynur Bulut, “Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation”, Journal of Functional Analysis, 2012
-
Lu Li, Vladimír Šverák, “Backward Uniqueness for the Heat Equation in Cones”, Communications in Partial Differential Equations, 37:8 (2012), 1414
-
WENDONG WANG, ZHIFEI ZHANG, “REGULARITY OF WEAK SOLUTIONS FOR THE NAVIER–STOKES EQUATIONS IN THE CLASS L∞(BMO-1)”, Commun. Contemp. Math, 14:03 (2012), 1250020
-
J. D. Gibbon, “Conditional regularity of solutions of the three-dimensional Navier–Stokes equations and implications for intermittency”, J. Math. Phys, 53:11 (2012), 115608
-
Qiao Liu, Jihong Zhao, Shangbin Cui, “Uniqueness of weak solution to the generalized magneto-hydrodynamic system”, Annali di Matematica, 2012
-
Zhao J.-h., Liu Q., “Weak-Strong Uniqueness of Hydrodynamic Flow of Nematic Liquid Crystals”, Electron. J. Differ. Equ., 2012, 182
-
Guo Zh., Gala S., “A Regularity Criterion for the Navier–Stokes Equations in Terms of One Directional Derivative of the Velocity Field”, Anal. Appl., 10:4 (2012), 373–380
-
Ali H., Ammari Z., “On the Hausdorff Dimension of Singular Sets for the Leray-Alpha Navier–Stokes Equations with Fractional Regularization”, Dyn. Partial Differ. Equ., 9:3 (2012), 261–271
-
Bae H., Biswas A., Tadmor E., “Analyticity and Decay Estimates of the Navier–Stokes Equations in Critical Besov Spaces”, Arch. Ration. Mech. Anal., 205:3 (2012), 963–991
-
Escauriaza L., Kenig C.E., Ponce G., Vega L., “Uniqueness Properties of Solutions to Schrodinger Equations”, Bull. Amer. Math. Soc., 49:3 (2012), 415–442
-
Wei Zh., Wang Yu.-Zh., Wang Y.-X., “Logarithmically Improved Regularity Criteria for the Navier–Stokes Equations in Lorentz Spaces”, Appl. Math. Comput., 218:19 (2012), 9848–9852
-
Cheskidov A., Shvydkoy R., “Ill-Posedness for Subcritical Hyperdissipative Navier–Stokes Equations in the Largest Critical Spaces”, J. Math. Phys., 53:11 (2012), 115620
-
Dascaliuc R., Grujic Z., “Vortex Stretching and Criticality for the Three-Dimensional Navier–Stokes Equations”, J. Math. Phys., 53:11 (2012), 115613
-
Han P., “Interior Regularity of Weak Solutions to the Perturbed Navier–Stokes Equations”, Appl. Mat., 57:5 (2012), 427–444
-
Melcher Ch., “Global Solvability of the Cauchy Problem for the Landau-Lifshitz-Gilbert Equation in Higher Dimensions”, Indiana Univ. Math. J., 61:3 (2012), 1175–1200
-
Chemin J.-Y., Planchon F., “Self-Improving Bounds for the Navier–Stokes Equations”, Bull. Soc. Math. Fr., 140:4 (2012), 583–597
-
Jiří Neustupa, “A note on local interior regularity of a suitable weak solution to the Navier–Stokes problem”, DCDS-S, 6:5 (2013), 1391
-
Terence Tao, “Localisation and compactness properties of the Navier–Stokes global regularity problem”, Anal. PDE, 6:1 (2013), 25
-
Didier Jesslé, B.J.a Jin, Antonín Novotný, “Navier–Stokes–Fourier System on Unbounded Domains: Weak Solutions, Relative Entropies, Weak-Strong Uniqueness”, SIAM J. Math. Anal, 45:3 (2013), 1907
-
C. Bardos, M. C. Lopes Filho, Dongjuan Niu, H. J. Nussenzveig Lopes, E. S. Titi, “Stability of Two-Dimensional Viscous Incompressible Flows under Three-Dimensional Perturbations and Inviscid Symmetry Breaking”, SIAM J. Math. Anal, 45:3 (2013), 1871
-
Quansen Jiu, Yanqing Wang, “Remarks on partial regularity for suitable weak solutions of the incompressible Magnetohydrodynamics equations”, Journal of Mathematical Analysis and Applications, 2013
-
Wendong Wang, Zhifei Zhang, “On the Interior Regularity Criteria for Suitable Weak Solutions of the Magnetohydrodynamics Equations”, SIAM J. Math. Anal, 45:5 (2013), 2666
-
Xiaoxin Zheng, “A regularity criterion for the tridimensional Navier–Stokes equations in term of one velocity component”, Journal of Differential Equations, 2013
-
A.R.. Nahmod, Nataša Pavlović, Gigliola Staffilani, “Almost Sure Existence of Global Weak Solutions for Supercritical Navier–Stokes Equations”, SIAM J. Math. Anal, 45:6 (2013), 3431
-
Ballew J., Trivisa K., “Weakly Dissipative Solutions and Weak-Strong Uniqueness for the Navier–Stokes-Smoluchowski System”, Nonlinear Anal.-Theory Methods Appl., 91 (2013), 1–19
-
Hineman J.L., Wang Ch., “Well-Posedness of Nematic Liquid Crystal Flow in l-Uloc(3) (R-3)”, Arch. Ration. Mech. Anal., 210:1 (2013), 177–218
-
Zhao J., Liu Q., “Logarithmically Improved Blow-Up Criteria for a Phase Field Navier–Stokes Vesicle-Fluid Interaction Model”, J. Math. Anal. Appl., 405:2 (2013), 422–437
-
Foxall E., Ibrahim S., Yoneda Ts., “Streamlines Concentration and Application to the Incompressible Navler-Stokes Equations”, Tohoku Math. J., 65:2 (2013), 273–279
-
Gallagher I., Koch G.S., Planchon F., “A Profile Decomposition Approach to the l-T(Infinity)(l-X(3)) Navier–Stokes Regularity Criterion”, Math. Ann., 355:4 (2013), 1527–1559
-
Zhou Y., Lei Zh., “Logarithmically Improved Criteria for Euler and Navier–Stokes Equations”, Commun. Pure Appl. Anal, 12:6 (2013), 2715–2719
-
Chan Ch.H., Czubak M., “Non-Uniqueness of the Leray-Hopf Solutions in the Hyperbolic Setting”, Dyn. Partial Differ. Equ., 10:1 (2013), 43–77
-
Raphael P., “Kenig-Merle Concentration Capacity”, Asterisque, 2013, no. 352, 121–146
-
Zujin Zhang, Peng Li, Dingxing Zhong, “Navier–Stokes equations with regularity in two entries of the velocity gradient tensor”, Applied Mathematics and Computation, 228 (2014), 546
-
Zujin Zhang, “A remark on the regularity criterion for the 3D Navier–Stokes equations involving the gradient of one velocity component”, Journal of Mathematical Analysis and Applications, 2014
-
Bo-Qing Dong, Zhifei Zhang, “On the weak–strong uniqueness of Koch–Tataruʼs solution for the Navier–Stokes equations”, Journal of Differential Equations, 2014
-
J.C.. Cortissoz, J.A.. Montero, C.E.. Pinilla, “On lower bounds for possible blow-up solutions to the periodic Navier–Stokes equation”, J. Math. Phys, 55:3 (2014), 033101
-
Stefano Bosia, Monica Conti, Vittorino Pata, “A regularity criterion for the Navier–Stokes equations in terms of the pressure gradient”, centr.eur.j.math, 2014
-
Reinhard Farwig, “On regularity of weak solutions to the instationary Navier–Stokes system: a review on recent results”, Ann Univ Ferrara, 2014
-
Kang K., Kim J.-M., “Boundary Regularity Criteria for Suitable Weak Solutions of the Magnetohydrodynamic Equations”, J. Funct. Anal., 266:1 (2014), 99–120
-
Merle F., Raphael P., Szeftel J., “On Collapsing Ring Blow-Up Solutions to the MASS Supercritical Nonlinear Schrodinger Equation”, Duke Math. J., 163:2 (2014), 369–431
-
Jiří Neustupa, Patrick Penel, “Regularity of a Weak Solution to the Navier–Stokes Equations via One Component of a Spectral Projection of Vorticity”, SIAM J. Math. Anal, 46:2 (2014), 1681
-
Wendong Wang, Zhifei Zhang, “On the interior regularity criteria and the number of singular points to the Navier–Stokes equations”, JAMA, 123:1 (2014), 139
-
Stefano Bosia, Vittorino Pata, J.C.. Robinson, “A Weak-L p Prodi–Serrin Type Regularity Criterion for the Navier–Stokes Equations”, J. Math. Fluid Mech, 2014
-
J.D. Gibbon, D.A. Donzis, Anupam Gupta, R.M. Kerr, Rahul Pandit, “Regimes of nonlinear depletion and regularity in the 3D Navier–Stokes equations”, Nonlinearity, 27:10 (2014), 2605
-
Jie Wu, Wendong Wang, “On backward uniqueness for the heat operator in cones”, Journal of Differential Equations, 2014
-
Jie Wu, Liqun Zhang, “Backward uniqueness for parabolic operators with variable coefficients in a half space”, Commun. Contemp. Math, 2014, 1550011
-
Dong H., Gu X., “Boundary Partial Regularity For the High Dimensional Navier–Stokes Equations”, J. Funct. Anal., 267:8 (2014), 2606–2637
-
Jiu Q., Wang Ya., “On Possible Time Singular Points and Eventual Regularity of Weak Solutions To the Fractional Navier–Stokes Equations”, Dyn. Partial Differ. Equ., 11:4 (2014), 321–343
-
Chae D., Tsai T.-P., “On Discretely Self-Similar Solutions of the Euler Equations”, Math. Res. Lett., 21:3 (2014), 437–447
-
Vialov V., “On the Regularity of Weak Solutions To the Mhd System Near the Boundary”, J. Math. Fluid Mech., 16:4 (2014), 745–769
-
Choi K., Vasseur A.F., “Estimates on Fractional Higher Derivatives of Weak Solutions For the Navier–Stokes Equations”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 31:5 (2014), 899–945
-
Chen Q., Tan Zh., Wu G., “Lps's Criterion For Incompressible Nematic Liquid Crystal Flows”, Acta Math. Sci., 34:4 (2014), 1072–1080
-
Jia H., Sverak V., “Local-in-Space Estimates Near Initial Time For Weak Solutions of the Navier–Stokes Equations and Forward Self-Similar Solutions”, Invent. Math., 196:1 (2014), 233–265
-
Wong P., “Global Wellposedness For a Certain Class of Large Initial Data For the 3D Navier–Stokes Equations”, Ann. Henri Poincare, 15:4 (2014), 633–643
-
Robinson J.C., Sadowski W., “A Local Smoothness Criterion For Solutions of the 3D Navier–Stokes Equations”, Rend. Semin. Mat. Univ. Padova, 131 (2014), 159–178
-
Cheskidov A., Shvydkoy R., “A Unified Approach To Regularity Problems For the 3D Navier–Stokes and Euler Equations: the Use of Kolmogorov's Dissipation Range”, J. Math. Fluid Mech., 16:2 (2014), 263–273
-
Pigong Han, “Decay Results of Higher-Order Norms for the Navier–Stokes Flows in 3D Exterior Domains”, Commun. Math. Phys, 334:1 (2015), 397
-
Zujin Zhang, “An almost Serrin-type regularity criterion for the Navier–Stokes equations involving the gradient of one velocity component”, Z. Angew. Math. Phys, 2015
-
Radu Dascaliuc, Nicholas Michalowski, Enrique Thomann, E.C.. Waymire, “Symmetry breaking and uniqueness for the incompressible Navier–Stokes equations”, Chaos, 25:7 (2015), 075402
-
Wang B., “Ill-Posedness For the Navier–Stokes Equations in Critical Besov Spaces (B) Over Dot(Infinity,Q) (-1)”, Adv. Math., 268 (2015), 350–372
-
Kim N., Kwak M., Yoo M., “Regularity Conditions of 3D Navier–Stokes Flow in Terms of Large Spectral Components”, Nonlinear Anal.-Theory Methods Appl., 116 (2015), 75–84
-
Ding Y., Sun X., “Uniqueness of Weak Solutions For Fractional Navier–Stokes Equations”, Front. Math. China, 10:1 (2015), 33–51
-
Bae H.-O., “Regularity Criterion For Generalized Newtonian Fluids in Bounded Domains”, J. Math. Anal. Appl., 421:1 (2015), 489–500
-
Zhaohui Dai, Xiaosong Wang, Lingrui Zhang, Wei Hou, “Blow-Up Criterion of Weak Solutions for the 3D Boussinesq Equations”, Journal of Function Spaces, 2015 (2015), 1
-
Zujin Zhang, Xian Yang, “On the regularity criterion for the Navier–Stokes equations involving the diagonal entry of the velocity gradient”, Nonlinear Analysis: Theory, Methods & Applications, 122 (2015), 169
-
Dongho Chae, “Remarks on the asymptotically discretely self-similar solutions of the Navier–Stokes and the Euler equations”, Nonlinear Analysis: Theory, Methods & Applications, 125 (2015), 251
-
Angkana Rüland, “On the backward uniqueness property for the heat equation in two-dimensional conical domains”, manuscripta math, 2015
-
Zujin Zhang, Xian Yang, “A note on the regularity criterion for the 3D Navier–Stokes equations via the gradient of one velocity component”, Journal of Mathematical Analysis and Applications, 2015
-
Xuanji Jia, Yong Zhou, “Ladyzhenskaya–Prodi–Serrin type regularity criteria for the 3D incompressible MHD equations in terms of 3 × 3 mixture matrices”, Nonlinearity, 28:9 (2015), 3289
-
Luo Yu., Tsai T.-P., “Regularity Criteria in Weak l-3 For 3D Incompressible Navier–Stokes Equations”, Funkc. Ekvacioj-Ser. Int., 58:3 (2015), 387–404
-
Nguyen Cong Phuc, “the Navier–Stokes Equations in Nonendpoint Borderline Lorentz Spaces”, J. Math. Fluid Mech., 17:4 (2015), 741–760
-
Xue L., “on the Discretely Self-Similar Solutions For the 3D Navier–Stokes Equations”, Nonlinearity, 28:10 (2015), 3695–3708
-
Barker T., Seregin G., “Ancient Solutions To Navier–Stokes Equations in Half Space”, J. Math. Fluid Mech., 17:3 (2015), 551–575
-
Bulut A., “the Defocusing Energy-Supercritical Cubic Nonlinear Wave Equation in Dimension Five”, Trans. Amer. Math. Soc., 367:9 (2015), 6017–6061
-
Bae H., “Existence and Analyticity of Lei-Lin Solution To the Navier–Stokes Equations”, Proc. Amer. Math. Soc., 143:7 (2015), PII S0002-9939(2015)12266-6, 2887–2892
-
Foias C., Jolly M.S., Lan R., Rupam R., Yang Y., Zhang B., “Time Analyticity With Higher Norm Estimates For the 2D Navier–Stokes Equations”, IMA J. Appl. Math., 80:3 (2015), 766–810
-
Tran Ch.V., Yu X., “Depletion of Nonlinearity in the Pressure Force Driving Navier–Stokes Flows”, Nonlinearity, 28:5 (2015), 1295–1306
-
Dodson B., Lawrie A., “Scattering For Radial, Semi-Linear, Super-Critical Wave Equations With Bounded Critical Norm”, Arch. Rational Mech. Anal, 218:3 (2015), 1459–1529
-
Flandoli F., “a Stochastic View Over the Open Problem of Well-Posedness For the 3D Navier–Stokes Equations”, Stochastic Analysis: a Series of Lectures, Progress in Probability, 68, eds. Dalang R., Dozzi M., Flandoli F., Russo F., Birkhauser Verlag Ag, 2015, 221–246
-
Cai X., Sun Y., “Blowup Criteria For Strong Solutions To the Compressible Navier–Stokes Equations With Variable Viscosity”, Nonlinear Anal., 29 (2016), 1–18
-
Lorenz J., Melo W.G., “on the Blow-Up Criterion of Periodic Solutions For Micropolar Equations in Homogeneous Sobolev Spaces”, Nonlinear Anal., 27 (2016), 93–106
-
Ohkitani K., “Late Formation of Singularities in Solutions To the Navier–Stokes Equations”, J. Phys. A, 49:1 (2016), 015502
-
Skalak Z., “a Regularity Criterion For the Navier–Stokes Equations Based on the Gradient of One Velocity Component”, J. Math. Anal. Appl., 437:1 (2016), 474–484
-
Ye Zh., “Remarks on the Regularity Criterion To the Navier–Stokes Equations Via the Gradient of One Velocity Component”, J. Math. Anal. Appl., 435:2 (2016), 1623–1633
-
Han P., “Long-Time Behavior For Navier–Stokes Flows in a Two-Dimensional Exterior Domain”, J. Funct. Anal., 270:3 (2016), 1091–1152
-
T. Barker, “Local boundary regularity for the Navier–Stokes equations in nonendpoint borderline Lorentz spaces”, Краевые задачи математической физики и смежные вопросы теории функций. 45, Посвящается юбилею Григория Александровича СЕРЕГИНА, Зап. научн. сем. ПОМИ, 444, ПОМИ, СПб., 2016, 15–46
; J. Math. Sci. (N. Y.), 224:3 (2017), 391–413 -
Burczak J., Zajazkowski W.M., Nonlinear Anal.-Real World Appl., 31 (2016), 513–532
-
Liu Q., “On weak–strong uniqueness of solutions to the generalized incompressible Navier–Stokes equations”, Comput. Math. Appl., 72:3 (2016), 675–686
-
Tran Ch.V., Yu X., “Logarithmic improvement of regularity criteria for the Navier–Stokes equations in terms of pressure”, Appl. Math. Lett., 58 (2016), 62–68
-
Huang T., “Regularity and uniqueness for a class of solutions to the hydrodynamic flow of nematic liquid crystals”, Anal. Appl., 14:4 (2016), 523–536
-
Gala S., Ragusa M.A., “Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices”, Appl. Anal., 95:6 (2016), 1271–1279
-
Yamazaki K., “On the three-dimensional magnetohydrodynamics system in scaling-invariant spaces”, Bull. Sci. Math., 140:5 (2016), 575–614
-
Wang L., “Uniqueness of self-similar shrinkers with asymptotically cylindrical ends”, J. Reine Angew. Math., 715 (2016), 207–230
-
Hsu P.-Y., Notsu H., Yoneda T., “A local analysis of the axisymmetric Navier–Stokes flow near a saddle point and no-slip flat boundary”, J. Fluid Mech., 794 (2016), 444–459
-
Ohkitani K., “Study of the Navier–Stokes regularity problem with critical norms”, Fluid Dyn. Res., 48:2 (2016), 021401
-
Gibbon J.D., “High–low frequency slaving and regularity issues in the 3D Navier–Stokes equations”, IMA J. Appl. Math., 81:2 (2016), 308–320
-
Gallagher I., Koch G.S., Planchon F., “Blow-up of Critical Besov Norms at a Potential Navier–Stokes Singularity”, Commun. Math. Phys., 343:1 (2016), 39–82
-
Yamazaki K., “Regularity Criteria of the Three-Dimensional Mhd System Involving One Velocity and One Vorticity Component”, Nonlinear Anal.-Theory Methods Appl., 135 (2016), 73–83
-
Bae H., Cannone M., “Log-Lipschitz Regularity of the 3D Navier–Stokes Equations”, Nonlinear Anal.-Theory Methods Appl., 135 (2016), 223–235
-
Shi J., Zhang Q., “Remarks on the uniqueness of weak solution for the 3D viscous magneto-hydrodynamics equations in
$${B^{1}_{\infty,\infty}}$$ B ∞ , ∞ 1”, Z. Angew. Math. Phys., 67:1 (2016), UNSP 7 -
Gala S., Ragusa M.A., “A regularity criterion for 3D micropolar fluid flows in terms of one partial derivative of the velocity”, Ann. Pol. Math., 116:3 (2016), 217–228
-
Zhang Z., Yang X., “Navier–Stokes equations with vorticity in Besov spaces of negative regular indices”, J. Math. Anal. Appl., 440:1 (2016), 415–419
-
Tao T., “Finite time blowup for an averaged three-dimensional Navier–Stokes equation”, J. Am. Math. Soc., 29:3 (2016), 601–674
-
Gala S., Ragusa M.A., “A new regularity criterion for the Navier–Stokes equations in terms of the two components of the velocity”, Electron. J. Qual. Theory Differ., 2016, no. 26, 1–9
-
Grujic Z., “Vortex stretching and anisotropic diffusion in the 3D Navier–Stokes equations”, Recent Advances in Partial Differential Equations and Applications, Contemporary Mathematics, 666, eds. Radulescu V., Sequeira A., Solonnikov V., Amer Mathematical Soc, 2016, 239–251
-
Chemin J.-Y., Zhang P., “On the critical one component regularity for 3-D Navier–Stokes system”, Ann. Sci. Ec. Norm. Super., 49:1 (2016), 131–167
-
Ye Zh., “Remarks on the Regularity Criterion To the 3D Navier–Stokes Equations Via One Velocity Component”, Differ. Integral Equ., 29:9-10 (2016), 957–976
-
Wang Ya., Wu G., Zhou D., “Refined regularity class of suitable weak solutions to the 3D magnetohydrodynamics equations with an application”, Z. Angew. Math. Phys., 67:6 (2016), 136
-
Zhang Z., Zhou Y., Comput. Math. Appl., 72:9 (2016), 2311–2314
-
Wu J., Zhang L., “The Landis–Oleinik conjecture in the exterior domain”, Adv. Math., 302 (2016), 190–230
-
Tran Ch.V., Yu X., “Pressure moderation and effective pressure in Navier–Stokes flows”, Nonlinearity, 29:10 (2016), 2990–3005
-
Bae H.-O., Kang K., Kim M., “Local Regularity Criteria of the Navier–Stokes Equations With Slip Boundary Conditions”, J. Korean. Math. Soc., 53:3 (2016), 597–621
-
Yamazaki K., “Regularity criteria of the 4D Navier–Stokes equations involving two velocity field components”, Commun. Math. Sci., 14:8 (2016), 2229–2252
-
Zhang Z., “Remarks on regularity criteria for the Navier–Stokes equations with axisymmetric data”, Ann. Pol. Math., 117:2 (2016), 181–196
-
Liu X.-G., Min J., Wang K., Zhang X., “Serrin's regularity results for the incompressible liquid crystals system”, Discret. Contin. Dyn. Syst., 36:10 (2016), 5579–5594
-
LemarieRieusset P., “Navier–Stokes Problem in the 21St Century”, Navier-Stokes Problem in the 21St Century, Crc Press-Taylor & Francis Group, 2016, 1–708
-
Robinson J., Rodrigo J., Sadowski W., “Three-Dimensional Navier–Stokes Equations: Classical Theory”, Three-Dimensional Navier-Stokes Equations: Classical Theory, Cambridge Studies in Advanced Mathematics, 157, Cambridge Univ Press, 2016, 1–471
-
Chemin J.-Y., Zhang P., Zhang Zh., “On the Critical One Component Regularity for 3-D Navier–Stokes System: General Case”, Arch. Ration. Mech. Anal., 224:3 (2017), 871–905
-
Seregin G., Sverak V., Nonlinear Anal.-Theory Methods Appl., 154:SI (2017), 269–296
-
Wang WenDong, Zhang ZhiFei, “Blow-up of critical norms for the 3-D Navier–Stokes equations”, Sci. China-Math., 60:4 (2017), 637–650
-
Kukavica I., Rusin W., Ziane M., “An Anisotropic Partial Regularity Criterion for the Navier–Stokes Equations”, J. Math. Fluid Mech., 19:1 (2017), 123–133
-
Hmidi T., Li D., “Small $\dot{B}^{-1}_{\infty , \infty}$ implies regularity”, Dyn. Partial Differ. Equ., 14:1 (2017), 1–4
-
Fan J., Ozawa T., “Regularity Criteria For Navier–Stokes and Related System”, Differ. Integral Equ., 30:1-2 (2017), 101–114
-
Pierfelice V., “The Incompressible Navier–Stokes Equations on Non-compact Manifolds”, J. Geom. Anal., 27:1 (2017), 577–617
-
Tran Ch.V., Yu X., “Note on Prodi-Serrin-Ladyzhenskaya type regularity criteria for the Navier–Stokes equations”, J. Math. Phys., 58:1 (2017), 011501
-
Lai B., Lin J., Wang Ch., “Forward Self-Similar Solutions to the Viscoelastic Navier–Stokes Equation with Damping”, SIAM J. Math. Anal., 49:1 (2017), 501–529
-
Ohkitani K., “Characterization of blowup for the Navier–Stokes equations using vector potentials”, AIP Adv., 7:1 (2017), 015211
-
Tran Ch.V., Yu X., “Regularity of Navier–Stokes flows with bounds for the pressure”, Appl. Math. Lett., 67 (2017), 21–27
-
Chae D., Lee J., “On the geometric regularity conditions for the 3D Navier–Stokes equations”, Nonlinear Anal.-Theory Methods Appl., 151 (2017), 265–273
-
Braz e Silva P., Melo W.G., Zingano P.R., “Lower Bounds on Blow-up of Solutions for Magneto-Micropolar Fluid Systems in Homogeneous Sobolev Spaces”, Acta Appl. Math., 147:1 (2017), 1–17
-
Ohkitani K., “Near-invariance under dynamic scaling for Navier–Stokes equations in critical spaces: a probabilistic approach to regularity problems”, J. Phys. A-Math. Theor., 50:4 (2017), 045501
-
Bradshaw Z., Grujic Z., “Frequency Localized Regularity Criteria for the 3D Navier–Stokes Equations”, Arch. Ration. Mech. Anal., 224:1 (2017), 125–133
-
Ohkitani K., “Cole-Hopf-Feynman-Kac Formula and Quasi-Invariance For Navier–Stokes Equations”, J. Phys. A-Math. Theor., 50:40 (2017), 405501
-
Kukavica I., Rusin W., Ziane M., “Localized Anisotropic Regularity Conditions For the Navier–Stokes Equations”, J. Nonlinear Sci., 27:6 (2017), 1725–1742
-
Barker T., Seregin G., “A Necessary Condition of Potential Blowup For the Navier–Stokes System in Half-Space”, Math. Ann., 369:3-4 (2017), 1327–1352
-
Kuzzay D., Saw E.-W., Martins Fabio J. W. A., Faranda D., Foucaut J.-M., Daviaud F., Dubrulle B., “New Method For Detecting Singularities in Experimental Incompressible Flows”, Nonlinearity, 30:6 (2017), 2381–2402
-
Zhang Z., Zhong D., Huang X., “A Refined Regularity Criterion For the Navier–Stokes Equations Involving One Non-Diagonal Entry of the Velocity Gradient”, J. Math. Anal. Appl., 453:2 (2017), 1145–1150
-
da Veiga H.B., “On the Extension to Slip Boundary Conditions of a Bae and Choe Regularity Criterion For the Navier–Stokes Equations. the Half-Space Case”, J. Math. Anal. Appl., 453:1 (2017), 212–220
-
Du L., Zhang T., “Almost Sure Existence of Global Weak Solutions For Incompressible Mud Equations in Negative-Order Sobolev Space”, J. Differ. Equ., 263:2 (2017), 1611–1642
-
Wang W.D., “Non Blow-Up Criterion For the 3-D Magneto-Hydrodynamics Equations in the Limiting Case”, Acta. Math. Sin.-English Ser., 33:7 (2017), 969–980
-
Guevara C., Nguyen Cong Phuc, “Local Energy Bounds and Epsilon-Regularity Criteria For the 3D Navier–Stokes System”, Calc. Var. Partial Differ. Equ., 56:3 (2017), 68
-
Ma W., Feng J., “Interior Regularity Criterion For Incompressible Ericksen-Leslie System”, Bound. Value Probl., 2017, 62
-
Fang D., Liu Ch., Qian Ch., “On Partial Regularity Problem For 3D Boussinesq Equations”, J. Differ. Equ., 263:7 (2017), 4156–4221
-
Farhat A., Grujic Z., Leitmeyer K., “The Space B-Infinity,Infinity(-1), Volumetric Sparseness, and 3D Nse”, J. Math. Fluid Mech., 19:3 (2017), 515–523
-
Duyckaerts T., Roy T., “Blow-Up of the Critical Sobolev Norm For Nonscattering Radial Solutions of Supercritical Wave Equations on R-3”, Bull. Soc. Math. Fr., 145:3 (2017), 503–573
-
Lorenz J., Zingano P.R., “Properties At Potential Blow-Up Times For the Incompressible Navier–Stokes Equations”, Bol. Soc. Parana. Mat., 35:2 (2017), 127–158
-
Wang F., “On Global Regularity of Incompressible Mhd Equations in R-3”, J. Math. Anal. Appl., 454:2 (2017), 936–941
-
J. Burczak, G. Seregin, “$LlogL$-integrability of the velocity gradient for Stokes system with drifts in $L_\infty (BMO^{-1})$”, Краевые задачи математической физики и смежные вопросы теории функций. 46, Зап. научн. сем. ПОМИ, 459, ПОМИ, СПб., 2017, 37–57
-
Yamazaki K., “Horizontal Biot-Savart Law in General Dimension and An Application to the 4D Magneto-Hydrodynamics”, Differ. Integral Equ., 31:3-4 (2018), 301–328
-
Shi Z., “Self-Similar Solutions of Stationary Navier–Stokes Equations”, J. Differ. Equ., 264:3 (2018), 1550–1580
-
Liu J., Wang W., “Boundary Regularity Criteria For the 6D Steady Navier–Stokes and Mhd Equations”, J. Differ. Equ., 264:3 (2018), 2351–2376
-
Choe H.J., Wolf J., Yang M., “A New Local Regularity Criterion For Suitable Weak Solutions of the Navier–Stokes Equations in Terms of the Velocity Gradient”, Math. Ann., 370:1-2 (2018), 629–647
-
Gustafson S., Roxanas D., “Global, Decaying Solutions of a Focusing Energy-Critical Heat Equation in R-4”, J. Differ. Equ., 264:9 (2018), 5894–5927
-
Zhang Z., “A Pointwise Regularity Criterion For Axisymmetric Navier–Stokes System”, J. Math. Anal. Appl., 461:1 (2018), 1–6
-
Levy G., “A Uniqueness Lemma With Applications to Regularization and Incompressible Fluid Mechanics”, Commun. Contemp. Math., 20:3 (2018), 1750048
-
Pooley B.C., “On a Model For the Navier–Stokes Equations Using Magnetization Variables”, J. Differ. Equ., 264:8 (2018), 5180–5196
-
Barker T., “Uniqueness Results For Weak Leray-Hopf Solutions of the Navier–Stokes System With Initial Values in Critical Spaces”, J. Math. Fluid Mech., 20:1 (2018), 133–160
-
Zhang Z., “An Improved Regularity Criterion For the Navier–Stokes Equations in Terms of One Directional Derivative of the Velocity Field”, Bull. Math. Sci., 8:1 (2018), 33–47
-
Duyckaerts T., Yang J., “Blow-Up of a Critical Sobolev Norm For Energy-Subcritical and Energy-Supercritical Wave Equations”, Anal. PDE, 11:4 (2018), 983–1028
-
Zhang Z., Li J., Yao Zh.-a., “A Remark on the Global Regularity Criterion For the 3D Navier–Stokes Equations Based on End-Point Prodi-Serrin Conditions”, Appl. Math. Lett., 83 (2018), 182–187
-
Jiu Q., Liu J., “Regularity Criteria to the Axisymmetric Incompressible Magneto-Hydrodynamics Equations”, Dyn. Partial Differ. Equ., 15:2 (2018), 109–126
-
Men Yu., Wang W., Wu G., “Endpoint Regularity Criterion For Weak Solutions of the 3D Incompressible Liquid Crystals System”, Math. Meth. Appl. Sci., 41:10 (2018), 3672–3683
-
Albritton D., “Blow-Up Criteria For the Navier–Stokes Equations in Non-Endpoint Critical Besov Spaces”, Anal. PDE, 11:6 (2018), 1415–1456
-
Liu Q., Dai G., “On the 3D Navier–Stokes Equations With Regularity in Pressure”, J. Math. Anal. Appl., 458:1 (2018), 497–507
-
Zhang Z., “Serrin-Type Regularity Criterion For the Navier–Stokes Equations Involving One Velocity and One Vorticity Component”, Czech. Math. J., 68:1 (2018), 219–225
-
Levy G., “On An Anisotropic Serrin Criterion For Weak Solutions of the Navier–Stokes Equations”, J. Math. Pures Appl., 117 (2018), 123–145
-
Liu Q., “Dimension of Singularities to the 3D Simplified Nematic Liquid Crystal Flows”, Nonlinear Anal.-Real World Appl., 44 (2018), 246–259
-
Chikami N., “On Gagliardo-Nirenberg Type Inequalities in Fourier-Herz Spaces”, J. Funct. Anal., 275:5 (2018), 1138–1172
-
Gibbon J.D. Gupta A. Pal N. Pandit R., “The Role of Bkm-Type Theorems in 3D Euler, Navier–Stokes and Cahn-Hilliard-Navier–Stokes Analysis”, Physica D, 376:SI (2018), 60–68
-
Wang W., Zhang L., Zhang Zh., “On the Interior Regularity Criteria of the 3-D Navier–Stokes Equations Involving Two Velocity Components”, Discret. Contin. Dyn. Syst., 38:5 (2018), 2609–2627
-
Kerr R.M., “Enstrophy and Circulation Scaling For Navier–Stokes Reconnection”, J. Fluid Mech., 839 (2018), R2
-
Г. А. Серëгин, Т. Н. Шилкин, “Теоремы лиувиллевского типа для уравнений Навье–Стокса”, УМН, 73:4(442) (2018), 103–170
; G. A. Seregin, T. N. Shilkin, “Liouville-type theorems for the Navier–Stokes equations”, Russian Math. Surveys, 73:4 (2018), 661–724 -
Hou T.Y., Jin T., Liu P., “Potential Singularity For a Family of Models of the Axisymmetric Incompressible Flow”, J. Nonlinear Sci., 28:6, SI (2018), 2217–2247
-
Ye Zh., “Remark on the Regularity Criteria Via Partial Components of Vorticity to the Navier-Stokes Equations”, Math. Meth. Appl. Sci., 41:16 (2018), 6702–6716
-
Liu X.-g., Zhang X., “Liouville Theorem For Mhd System and Its Applications”, Commun. Pure Appl. Anal, 17:6 (2018), 2329–2350
-
Zhang Z., “Several New Regularity Criteria For the Axisymmetric Navier-Stokes Equations With Swirl”, Comput. Math. Appl., 76:6 (2018), 1420–1426
-
Li K., Ozawa T., Wang B., “Dynamical Behavior For the Solutions of the Navier-Stokes Equation”, Commun. Pure Appl. Anal, 17:4, SI (2018), 1511–1560
-
da Veiga H.B., “Navier–Stokes Equations: Some Questions Related to the Direction of the Vorticity”, Discret. Contin. Dyn. Syst.-Ser. S, 12:2, SI (2019), 203–213
|
Просмотров: |
Эта страница: | 972 | Полный текст: | 267 | Литература: | 81 | Первая стр.: | 5 |
|