General information
Latest issue
Impact factor
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Uspekhi Mat. Nauk:

Personal entry:
Save password
Forgotten password?

Uspekhi Mat. Nauk, 2003, Volume 58, Issue 2(350), Pages 123–156 (Mi umn613)  

This article is cited in 56 scientific papers (total in 56 papers)

On estimates of solutions of the non-stationary Stokes problem in anisotropic Sobolev spaces and on estimates for the resolvent of the Stokes operator

V. A. Solonnikov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: In this paper, which is mainly of a survey nature, a coercive estimate is proved in Sobolev spaces with a mixed norm to solve the non-stationary Stokes problem (with non-zero divergence) in bounded and exterior domains, and from the first estimate an estimate is proved for the resolvent of the Stokes operator. The latter proof uses the explicit representation of the solution of the problem in a half-space in terms of the Green's matrix; pointwise estimates are derived for the elements of this matrix.


Full text: PDF file (415 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2003, 58:2, 331–365

Bibliographic databases:

UDC: 517.9
MSC: Primary 35Q30; Secondary 35B45, 76D05, 46E35, 47A10, 34B27
Received: 15.02.2003

Citation: V. A. Solonnikov, “On estimates of solutions of the non-stationary Stokes problem in anisotropic Sobolev spaces and on estimates for the resolvent of the Stokes operator”, Uspekhi Mat. Nauk, 58:2(350) (2003), 123–156; Russian Math. Surveys, 58:2 (2003), 331–365

Citation in format AMSBIB
\by V.~A.~Solonnikov
\paper On estimates of solutions of the non-stationary Stokes problem in anisotropic Sobolev spaces and on estimates for the resolvent of the Stokes operator
\jour Uspekhi Mat. Nauk
\yr 2003
\vol 58
\issue 2(350)
\pages 123--156
\jour Russian Math. Surveys
\yr 2003
\vol 58
\issue 2
\pages 331--365

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. A. Ladyzhenskaya, “Sixth problem of the millennium: Navier–Stokes equations, existence and smoothness”, Russian Math. Surveys, 58:2 (2003), 251–286  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. J. Math. Sci. (N. Y.), 136:2 (2006), 3735–3767  mathnet  crossref  mathscinet  zmath  elib
    3. J. Math. Sci. (N. Y.), 132:3 (2006), 339–358  mathnet  crossref  mathscinet  zmath  elib
    4. Crispo F., “On Navier–Stokes equations: punctual stability in space and time in $R^n$ ad in semispace”, Bollettino della'Unione Matematica Italiana. A, 8:3 (2005), 501–503  isi
    5. J. Math. Sci. (N. Y.), 143:2 (2007), 2911–2923  mathnet  crossref  mathscinet  zmath  elib
    6. J. Math. Sci. (N. Y.), 143:2 (2007), 2924–2935  mathnet  crossref  mathscinet  zmath  elib
    7. J. Math. Sci. (N. Y.), 159:4 (2009), 486–523  mathnet  crossref  zmath  elib
    8. J. Math. Sci. (N. Y.), 166:1 (2010), 40–52  mathnet  crossref
    9. J. Math. Sci. (N. Y.), 166:1 (2010), 106–117  mathnet  crossref
    10. Deuring P., “Spatial decay of time-dependent Oseen flows”, SIAM J. Math. Anal., 41:3 (2009), 886–922  crossref  mathscinet  zmath  isi
    11. Johansson B.T., “Reconstruction of an unsteady flow from incomplete boundary data: Part I. Theory”, Int. J. Numer. Methods Heat Fluid Flow, 19:1 (2009), 53–63  crossref  zmath  isi
    12. L. I. Sazonov, “Otsenki vozmuschennoi polugruppy Ozeena”, Vladikavk. matem. zhurn., 11:3 (2009), 51–61  mathnet  mathscinet  elib
    13. Jin Bum Ja, “Weighted $L^q-L^1$ estimate of the Stokes flow in the half space”, Nonlinear Anal., 72:2 (2010), 1031–1043  crossref  mathscinet  zmath  isi
    14. J. Math. Sci. (N. Y.), 178:3 (2011), 243–264  mathnet  crossref
    15. J. Math. Sci. (N. Y.), 178:3 (2011), 282–291  mathnet  crossref
    16. Deuring P., Varnhorn W., “On Oseen Resolvent Estimates”, Differential and Integral Equations, 23:11–12 (2010), 1139–1149  mathscinet  zmath  isi
    17. Jin B.J., “Spatial and temporal decay estimate of the Stokes flow of weighted L-1 initial data in the half space”, Nonlinear Analysis-Theory Methods & Applications, 73:5 (2010), 1394–1407  crossref  mathscinet  zmath  isi
    18. Pal'tsev B.V., “On the Convergence Conditions for the Method with Boundary Condition Splitting in Sobolev Spaces of High Smoothness and the Compatibility Conditions for the Nonstationary Stokes Problem”, Doklady Mathematics, 82:3 (2010), 931–935  crossref  mathscinet  zmath  isi
    19. V. A. Solonnikov, “$L_p$-estimates of solutions of a linear problem arising in magnetohydrodynamics”, St. Petersburg Math. J., 23:1 (2012), 161–177  mathnet  crossref  mathscinet  zmath  isi  elib
    20. J. Math. Sci. (N. Y.), 185:5 (2012), 659–667  mathnet  crossref  mathscinet
    21. Han P., “Weighted Decay Properties for the Incompressible Stokes Flow and Navier–Stokes Equations in a Half Space”, J. Differ. Equ., 253:6 (2012), 1744–1778  crossref  mathscinet  zmath  adsnasa  isi
    22. TongKeun Chang, Hi Jun Choe, “Maximum modulus estimate for the solution of the Stokes equations”, Journal of Differential Equations, 2013  crossref  mathscinet  isi
    23. J. Math. Sci. (N. Y.), 195:1 (2013), 1–12  mathnet  crossref  mathscinet
    24. Reinhard Farwig, Ronald Guenther, Enrique Thomann, Šarka Nečasová, “The fundamental solution of linearized nonstationary Navier–Stokes equations of motion around a rotating and translating body”, DCDS-A, 34:2 (2013), 511  crossref  mathscinet  isi
    25. St. Petersburg Math. J., 25:5 (2014), 815–833  mathnet  crossref  mathscinet  zmath  isi  elib
    26. Jin B.J., “Navier–Stokes Equations in Besov Space B-Infinity,Infinity(-S)(R-+(N))”, J. Korean. Math. Soc., 50:4 (2013), 771–795  crossref  mathscinet  zmath  isi
    27. Kusaka Y., “Global-in-Time Strong Solvability of the Multi-Dimensional One-Phase Stefan Problem for an Incompressible Viscous Fluid”, Jpn. J. Ind. Appl. Math., 30:2 (2013), 415–439  crossref  mathscinet  zmath  isi
    28. Han P., “Long-Time Behavior for the Nonstationary Navier Stokes Flows in l-1(R-+(N))”, J. Funct. Anal., 266:3 (2014), 1511–1546  crossref  mathscinet  zmath  isi
    29. Ken Abe, “Some uniqueness result of the stokes flow in a half space in a space of bounded functions”, DCDS-S, 7:5 (2014), 887  crossref  mathscinet  zmath  isi
    30. Bulicek M., Malek J., Shilkin T.N., “On the Regularity of Two-Dimensional Unsteady Flows of Heat-Conducting Generalized Newtonian Fluids”, Nonlinear Anal.-Real World Appl., 19 (2014), 89–104  crossref  mathscinet  zmath  isi
    31. Han P., “Weighted Spatial Decay Rates For the Navier–Stokes Flows in a Half-Space”, Proc. R. Soc. Edinb. Sect. A-Math., 144:3 (2014), 491–510  crossref  mathscinet  zmath  isi
    32. Deuring P., “A Representation Formula For the Velocity Part of 3D Time-Dependent Oseen Flows”, J. Math. Fluid Mech., 16:1 (2014), 1–39  crossref  mathscinet  zmath  isi
    33. Tongkeun Chang, Bum Ja Jin, “Initial and boundary value problem of the unsteady Navier–Stokes system in the half space with Hölder continuous boundary data”, Journal of Mathematical Analysis and Applications, 2015  crossref  mathscinet  isi
    34. Barker T. Seregin G., “Ancient Solutions To Navier–Stokes Equations in Half Space”, 17, no. 3, 2015, 551–575  crossref  mathscinet  zmath  isi
    35. Chang T., Jin B.J., “Solvability of the Initial-Boundary Value Problem of the Navier–Stokes Equations With Rough Data”, 125, 2015, 498–517  crossref  mathscinet  zmath  isi
    36. Liu Zh., Yu X., “Large Time Behavior For the Incompressible Magnetohydrodynamic Equations in Half-Spaces”, 38, no. 11, 2015, 2376–2388  crossref  mathscinet  zmath  isi
    37. Choe H.J., “Boundary Regularity of Suitable Weak Solution For the Navier–Stokes Equations”, 268, no. 8, 2015, 2171–2187  crossref  mathscinet  zmath  isi
    38. Han P., “Large Time Behavior For the Nonstationary Navier–Stokes Flows in the Half-Space”, 288, 2016, 1–58  crossref  mathscinet  zmath  isi
    39. Zajaczkowski W.M., “Stability of two-dimensional solutions to the Navier–Stokes equations in cylindrical domains under Navier boundary conditions”, J. Math. Anal. Appl., 444:1 (2016), 275–297  crossref  mathscinet  zmath  isi  scopus
    40. Chang T., Jin B.J., J. Math. Anal. Appl., 439:1 (2016), 70–90  crossref  mathscinet  zmath  isi  elib  scopus
    41. Kozlov V. Rossmann J., “On the nonstationary Stokes system in a cone”, J. Differ. Equ., 260:12 (2016), 8277–8315  crossref  mathscinet  zmath  isi  scopus
    42. Korobkov M., Tsai T.-P., “Forward self-similar solutions of the Navier–Stokes equations in the half space”, Anal. PDE, 9:8 (2016), 1811–1827  crossref  mathscinet  zmath  isi  scopus
    43. Liu Zh.-x., Yu X.-j., “Long time L 1-behavior for the incompressible magneto-hydrodynamic equations in a half-space”, Acta Math. Appl. Sin.-Engl. Ser., 32:4 (2016), 933–944  crossref  mathscinet  zmath  isi  scopus
    44. Chang T., Jin B.J., “Notes on the Space-Time Decay Rate of the Stokes Flows in the Half Space”, J. Differ. Equ., 263:1 (2017), 240–263  crossref  mathscinet  zmath  isi
    45. Bradshaw Z., Tsai T.-P., “Rotationally Corrected Scaling Invariant Solutions to the Navier–Stokes Equations”, Commun. Partial Differ. Equ., 42:7 (2017), 1065–1087  crossref  mathscinet  zmath  isi
    46. Deuring P., “Oseen Resolvent Estimates With Small Resolvent Parameter”, J. Differ. Equ., 265:1 (2018), 280–311  crossref  mathscinet  zmath  isi
    47. Chang T., Choe H.J., Kang K., “On Maximum Modulus Estimates of the Navier–Stokes Equations With Nonzero Boundary Data”, SIAM J. Math. Anal., 50:3 (2018), 3147–3171  crossref  mathscinet  zmath  isi
    48. Deuring P., “Stability of Stationary Viscous Incompressible Flow Around a Rigid Body Performing a Translation”, J. Math. Fluid Mech., 20:3 (2018), 937–967  crossref  mathscinet  isi  scopus
    49. Han P., “On Weighted Estimates For the Stokes Flows, With Application to the Navier–Stokes Equations”, J. Math. Fluid Mech., 20:3 (2018), 1155–1172  crossref  mathscinet  isi  scopus
    50. G. A. Seregin, T. N. Shilkin, “Liouville-type theorems for the Navier–Stokes equations”, Russian Math. Surveys, 73:4 (2018), 661–724  mathnet  crossref  crossref  adsnasa  isi  elib
    51. Maremonti P., Shimizu S., “Global Existence of Solutions to 2-D Navier-Stokes Flow With Non-Decaying Initial Data in Half-Plane”, J. Differ. Equ., 265:10 (2018), 5352–5383  crossref  mathscinet  zmath  isi  scopus
    52. Chen Yu., Kim S., Yu Y., “Freedericksz Transition in Nematic Liquid Crystal Flows in Dimension Two”, SIAM J. Math. Anal., 50:5 (2018), 4838–4860  crossref  mathscinet  zmath  isi  scopus
    53. M. Chernobay, “On type I blow up for the Navier–Stokes equations near the boundary”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 47, K 85-letiyu Vsevoloda Alekseevicha SOLONNIKOVA, Zap. nauchn. sem. POMI, 477, POMI, SPb., 2018, 136–149  mathnet
    54. Azal Mera, Alexander A. Shlapunov, Nikolai Tarkhanov, “Navier–Stokes equations for elliptic complexes”, Zhurn. SFU. Ser. Matem. i fiz., 12:1 (2019), 3–27  mathnet  crossref
    55. Kim H., Thomann E.A., Guenther R.B., “A Representation of the Solution of the Stokes Equations in the Half Space R+3: Application to Spatial and Temporal Estimates of the Pressure”, J. Math. Fluid Mech., 21:1 (2019), UNSP 16  crossref  mathscinet  isi  scopus
    56. Chang T., Jin B.J., “Global in Time Solvability of the Navier-Stokes Equations in the Half-Space”, J. Differ. Equ., 267:7 (2019), 4293–4319  crossref  isi
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:636
    Full text:250
    First page:2

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019