Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1962, Volume 17, Issue 6(108), Pages 135–142 (Mi umn6553)  

This article is cited in 1 scientific paper (total in 1 paper)

Scientific notes and problems

On some properties of unconditional convergence bases

B. E. Veits


Full text: PDF file (582 kB)

Bibliographic databases:
Received: 24.07.1959

Citation: B. E. Veits, “On some properties of unconditional convergence bases”, Uspekhi Mat. Nauk, 17:6(108) (1962), 135–142

Citation in format AMSBIB
\Bibitem{Vei62}
\by B.~E.~Veits
\paper On some properties of unconditional convergence bases
\jour Uspekhi Mat. Nauk
\yr 1962
\vol 17
\issue 6(108)
\pages 135--142
\mathnet{http://mi.mathnet.ru/umn6553}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=146629}
\zmath{https://zbmath.org/?q=an:0117.32602}


Linking options:
  • http://mi.mathnet.ru/eng/umn6553
  • http://mi.mathnet.ru/eng/umn/v17/i6/p135

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. D. Milman, “Geometric theory of Banach spaces. Part I. The theory of basis and minimal systems”, Russian Math. Surveys, 25:3 (1970), 111–170  mathnet  crossref  mathscinet  zmath
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:158
    Full text:77
    First page:2

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021