RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2003, Volume 58, Issue 5(353), Pages 201–202 (Mi umn671)  

This article is cited in 6 scientific papers (total in 6 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Global $L^2$ estimates for a class of Fourier integral operators with symbols in Besov spaces

M. Sugimotoa, M. V. Ruzhanskyb

a Osaka University
b Imperial College, Technology and Medicine

DOI: https://doi.org/10.4213/rm671

Full text: PDF file (196 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2003, 58:5, 1044–1046

Bibliographic databases:

MSC: Primary 35S30; Secondary 47G10
Accepted: 27.07.2003

Citation: M. Sugimoto, M. V. Ruzhansky, “Global $L^2$ estimates for a class of Fourier integral operators with symbols in Besov spaces”, Uspekhi Mat. Nauk, 58:5(353) (2003), 201–202; Russian Math. Surveys, 58:5 (2003), 1044–1046

Citation in format AMSBIB
\Bibitem{SugRuz03}
\by M.~Sugimoto, M.~V.~Ruzhansky
\paper Global $L^2$ estimates for a~class of Fourier integral operators with symbols in Besov spaces
\jour Uspekhi Mat. Nauk
\yr 2003
\vol 58
\issue 5(353)
\pages 201--202
\mathnet{http://mi.mathnet.ru/umn671}
\crossref{https://doi.org/10.4213/rm671}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2035724}
\zmath{https://zbmath.org/?q=an:1070.35138}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2003RuMaS..58.1044R}
\transl
\jour Russian Math. Surveys
\yr 2003
\vol 58
\issue 5
\pages 1044--1046
\crossref{https://doi.org/10.1070/RM2003v058n05ABEH000671}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000189179400006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1542381306}


Linking options:
  • http://mi.mathnet.ru/eng/umn671
  • https://doi.org/10.4213/rm671
  • http://mi.mathnet.ru/eng/umn/v58/i5/p201

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ruzhansky M., Sugimoto M., “Global $L^2$-boundedness theorems for a class of Fourier integral operators”, Comm. Partial Differential Equations, 31:4 (2006), 547–569  crossref  mathscinet  zmath  isi  scopus  scopus
    2. Ruzhansky M., Sugimoto M., “Global calculus of Fourier integral operators, weighted estimates, and applications to global analysis of hyperbolic equations”, Pseudo-Differential Operators and Related Topics, Operator Theory : Advances and Applications, 164, 2006, 65–78  crossref  mathscinet  zmath  isi
    3. Concetti F., Toft J., “Trace ideals for Fourier integral operators with non-smooth symbols”, Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis, Fields Institute Communications, 52, 2007, 255–264  mathscinet  zmath  isi
    4. Concetti F., Toft J., “Schatten-von Neumann properties for Fourier integral operators with non-smooth symbols. I”, Ark. Mat., 47:2 (2009), 295–312  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    5. Toft J., Concetti F., Garello G., “Schatten-Von Neumann Properties for Fourier Integral Operators With Non-Smooth Symbols II”, Osaka J Math, 47:3 (2010), 739–786  mathscinet  zmath  isi
    6. Michael Ruzhansky, Mitsuru Sugimoto, “Weighted Sobolev L2 estimates for a class of Fourier integral operators”, Math. Nachr, 2011, n/a  crossref  mathscinet  isi  scopus  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:167
    Full text:73
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019