RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2003, Volume 58, Issue 6(354), Pages 45–92 (Mi umn675)  

This article is cited in 6 scientific papers (total in 6 papers)

Recognition algorithms in knot theory

I. A. Dynnikov

M. V. Lomonosov Moscow State University

Abstract: In this paper the problem of constructing algorithms for comparing knots and links is discussed. A survey of existing approaches and basic results in this area is given. In particular, diverse combinatorial methods for representing links are discussed, the Haken algorithm for recognizing a trivial knot (the unknot) and a scheme for constructing a general algorithm (using Haken's ideas) for comparing links are presented, an approach based on representing links by closed braids is described, the known algorithms for solving the word problem and the conjugacy problem for braid groups are described, and the complexity of the algorithms under consideration is discussed. A new method of combinatorial description of knots is given together with a new algorithm (based on this description) for recognizing the unknot by using a procedure for monotone simplification. In the conclusion of the paper several problems are formulated whose solution could help to advance towards the “algorithmization” of knot theory.

DOI: https://doi.org/10.4213/rm675

Full text: PDF file (641 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2003, 58:6, 1093–1139

Bibliographic databases:

UDC: 515.162.8
MSC: Primary 57M25; Secondary 20F10, 20F36, 20F05, 68Q25
Received: 07.10.2003

Citation: I. A. Dynnikov, “Recognition algorithms in knot theory”, Uspekhi Mat. Nauk, 58:6(354) (2003), 45–92; Russian Math. Surveys, 58:6 (2003), 1093–1139

Citation in format AMSBIB
\Bibitem{Dyn03}
\by I.~A.~Dynnikov
\paper Recognition algorithms in knot theory
\jour Uspekhi Mat. Nauk
\yr 2003
\vol 58
\issue 6(354)
\pages 45--92
\mathnet{http://mi.mathnet.ru/umn675}
\crossref{https://doi.org/10.4213/rm675}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2054090}
\zmath{https://zbmath.org/?q=an:1063.57005}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2003RuMaS..58.1093D}
\elib{http://elibrary.ru/item.asp?id=14419974}
\transl
\jour Russian Math. Surveys
\yr 2003
\vol 58
\issue 6
\pages 1093--1139
\crossref{https://doi.org/10.1070/RM2003v058n06ABEH000675}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000221152300002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-2442681471}


Linking options:
  • http://mi.mathnet.ru/eng/umn675
  • https://doi.org/10.4213/rm675
  • http://mi.mathnet.ru/eng/umn/v58/i6/p45

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Chernavsky A.V., Leksine V.P., “Unrecognizability of manifolds”, Ann. Pure Appl. Logic, 141:3 (2006), 325–335  crossref  mathscinet  zmath  isi  elib  scopus
    2. Funar L., Kapoudjian Ch., “The braided Ptolemy-Thompson group is finitely presented”, Geom. Topol., 12:1 (2008), 475–530  crossref  mathscinet  zmath  isi  scopus
    3. Hayashi Ch., Yamada S., “Unknotting Rectangular Diagrams of the Trivial Knot by Exchange Moves”, J. Knot Theory Ramifications, 22:11 (2013), 1350067  crossref  mathscinet  zmath  isi  scopus
    4. Maxim Prasolov, “Rectangular diagrams of Legendrian graphs”, J. Knot Theory Ramifications, 23:13 (2014), 1450074  crossref  mathscinet  zmath  isi  scopus
    5. Ando T., Hayashi Ch., Hayashi M., “Rectangular Seifert Circles and Arcs System”, J. Knot Theory Ramifications, 23:8 (2014), 1450041  crossref  mathscinet  zmath  isi  scopus
    6. Ando T., Hayashi Ch., Nishikawa Yu., “Realizing Exterior Cromwell Moves on Rectangular Diagrams By Reidemeister Moves”, J. Knot Theory Ramifications, 23:5 (2014), 1450023  crossref  mathscinet  zmath  isi  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:879
    Full text:424
    References:46
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019