RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2007, Volume 62, Issue 5(377), Pages 169–170 (Mi umn7487)  

This article is cited in 7 scientific papers (total in 7 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

A case of complete integrability in the dynamics on the tangent bundle of a two-dimensional sphere

M. V. Shamolin

M. V. Lomonosov Moscow State University

DOI: https://doi.org/10.4213/rm7487

Full text: PDF file (296 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2007, 62:5, 1009–1011

Bibliographic databases:

MSC: 70E15, 70E40
Presented: A. V. Mikhalev
Accepted: 27.07.2007

Citation: M. V. Shamolin, “A case of complete integrability in the dynamics on the tangent bundle of a two-dimensional sphere”, Uspekhi Mat. Nauk, 62:5(377) (2007), 169–170; Russian Math. Surveys, 62:5 (2007), 1009–1011

Citation in format AMSBIB
\Bibitem{Sha07}
\by M.~V.~Shamolin
\paper A case of complete integrability in the dynamics on the tangent bundle of a~two-dimensional sphere
\jour Uspekhi Mat. Nauk
\yr 2007
\vol 62
\issue 5(377)
\pages 169--170
\mathnet{http://mi.mathnet.ru/umn7487}
\crossref{https://doi.org/10.4213/rm7487}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2373767}
\zmath{https://zbmath.org/?q=an:1137.37325}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2007RuMaS..62.1009S}
\elib{http://elibrary.ru/item.asp?id=25787470}
\transl
\jour Russian Math. Surveys
\yr 2007
\vol 62
\issue 5
\pages 1009--1011
\crossref{https://doi.org/10.1070/RM2007v062n05ABEH004470}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000253899500017}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-40749094870}


Linking options:
  • http://mi.mathnet.ru/eng/umn7487
  • https://doi.org/10.4213/rm7487
  • http://mi.mathnet.ru/eng/umn/v62/i5/p169

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. V. Shamolin, “Dynamical systems with variable dissipation: Approaches, methods, and applications”, J. Math. Sci., 162:6 (2009), 741–908  mathnet  crossref  mathscinet  zmath  elib  elib
    2. Shamolin M.V., “New cases of integrability in the spatial dynamics of a rigid body”, Dokl. Phys., 55:3 (2010), 155–159  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
    3. V. V. Trofimov, M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, J. Math. Sci., 180:4 (2012), 365–530  mathnet  crossref  mathscinet
    4. M. V. Shamolin, “Integrable cases in the dynamics of a multi-dimensional rigid body in a nonconservative field in the presence of a tracking force”, J. Math. Sci., 214:6 (2016), 865–891  mathnet  crossref  mathscinet
    5. M. V. Shamolin, “Integrable variable dissipation systems on the tangent bundle of a multi-dimensional sphere and some applications”, J. Math. Sci., 230:2 (2018), 185–353  mathnet  crossref  elib
    6. Shamolin M.V., “Integrable nonconservative dynamical systems on the tangent bundle of the multidimensional sphere”, Differ. Equ., 52:6 (2016), 722–738  crossref  mathscinet  zmath  isi  elib  scopus
    7. M. V. Shamolin, “Integrable systems on the tangent bundle of a multi-dimensional sphere”, J. Math. Sci. (N. Y.), 234:4 (2018), 548–590  mathnet  crossref
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:215
    Full text:77
    References:53
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019