RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2004, Volume 59, Issue 6(360), Pages 111–150 (Mi umn798)  

This article is cited in 16 scientific papers (total in 16 papers)

Analytic theory of difference equations with rational and elliptic coefficients and the Riemann–Hilbert problem

I. M. Kricheverab

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b Columbia University

Abstract: A new approach to the construction of the analytic theory of difference equations with rational and elliptic coefficients is proposed, based on the construction of canonical meromorphic solutions which are analytic along “thick” paths. The concept of these solutions leads to the definition of local monodromies of difference equations. It is shown that, in the continuous limit, these local monodromies converge to monodromy matrices of differential equations. In the elliptic case a new type of isomonodromy transformations changing the periods of elliptic curves is constructed.

DOI: https://doi.org/10.4213/rm798

Full text: PDF file (480 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2004, 59:6, 1117–1154

Bibliographic databases:

UDC: 517.9
MSC: Primary 30E25, 39A11, 34M35; Secondary 34M50, 34M55, 45E05, 30D99, 32S40, 14H52
Received: 28.06.2004

Citation: I. M. Krichever, “Analytic theory of difference equations with rational and elliptic coefficients and the Riemann–Hilbert problem”, Uspekhi Mat. Nauk, 59:6(360) (2004), 111–150; Russian Math. Surveys, 59:6 (2004), 1117–1154

Citation in format AMSBIB
\Bibitem{Kri04}
\by I.~M.~Krichever
\paper Analytic theory of difference equations with rational and elliptic coefficients and the Riemann--Hilbert problem
\jour Uspekhi Mat. Nauk
\yr 2004
\vol 59
\issue 6(360)
\pages 111--150
\mathnet{http://mi.mathnet.ru/umn798}
\crossref{https://doi.org/10.4213/rm798}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2138470}
\zmath{https://zbmath.org/?q=an:1075.39012}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2004RuMaS..59.1117K}
\transl
\jour Russian Math. Surveys
\yr 2004
\vol 59
\issue 6
\pages 1117--1154
\crossref{https://doi.org/10.1070/RM2004v059n06ABEH000798}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000228734800007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-17744388141}


Linking options:
  • http://mi.mathnet.ru/eng/umn798
  • https://doi.org/10.4213/rm798
  • http://mi.mathnet.ru/eng/umn/v59/i6/p111

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Arinkin D., Borodin A., “Moduli spaces of D-connections and difference Painlevé equations”, Duke Math. J., 134:3 (2006), 515–556  crossref  mathscinet  zmath  isi  elib
    2. Roques J., “Rational classification and confluence of regular singular difference systems”, Ann. Inst. Fourier (Grenoble), 56:6 (2006), 1663–1699  crossref  mathscinet  zmath  isi
    3. V. A. Yurko, “On recovering Sturm–Liouville operators on graphs”, Math. Notes, 79:4 (2006), 572–582  mathnet  crossref  crossref  mathscinet  zmath  zmath  isi  elib  elib
    4. Krichever I.M., Phong Duong Hong, “On the scaling limit of a singular integral operator”, Geom. Dedicata, 132:1 (2008), 121–134  crossref  mathscinet  zmath  isi  elib
    5. Dzhamay A., “On the Lagrangian structure of the discrete isospectral and isomonodromic transformations”, Int. Math. Res. Not. IMRN, 2008, rnn102, 22 pp.  mathscinet  zmath  isi
    6. Dzhamay A., “Factorizations of rational matrix functions with application to discrete isomonodromic transformations and difference Painlevé equations”, J. Phys. A, 42:45 (2009), 454008, 10 pp.  crossref  mathscinet  zmath  isi  elib
    7. Arinkin D., Borodin A., “tau-function of discrete isomonodromy transformations and probability”, Compos. Math., 145:3 (2009), 747–772  crossref  mathscinet  zmath  isi  elib
    8. Sauloy J., “Equations in q-differences and holomorphic vector bundles over the elliptic curve C*/q(Z))”, Astérisque, 2009, no. 323, 397–429  mathscinet  zmath  isi
    9. Eric M. Rains, “An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations)”, SIGMA, 7 (2011), 088, 24 pp.  mathnet  crossref  mathscinet
    10. Ovsienko V., Schwartz R.E., Tabachnikov S., “Liouville-Arnold Integrability of the Pentagram Map on Closed Polygons”, Duke Math. J., 162:12 (2013), 2149–2196  crossref  mathscinet  zmath  isi
    11. Ormerod Ch.M., “Spectral Curves and Discrete Painlevé Equations”, Algebraic and Analytic Aspects of Integrable Systems and Painlevé Equations, Contemporary Mathematics, 651, eds. Dzhamay A., Maruno K., Ormerod C., Amer Mathematical Soc, 2015, 65–85  crossref  mathscinet  zmath  isi
    12. Gautam S., Laredo V.T., “Yangians, quantum loop algebras, and abelian difference equations”, J. Am. Math. Soc., 29:3 (2016), 775–824  crossref  mathscinet  zmath  isi  elib  scopus
    13. Gautam S., Toledano Laredo V., “Meromorphic Tensor Equivalence For Yangians and Quantum Loop Algebras”, Publ. Math. IHES, 2017, no. 125, 267–337  crossref  mathscinet  zmath  isi
    14. Ormerod Ch.M., Rains E.M., “An Elliptic Garnier System”, Commun. Math. Phys., 355:2 (2017), 741–766  crossref  mathscinet  zmath  isi
    15. Nijhoff F., Delice N., “On Elliptic Lax Pairs and Isomonodromic Deformation Systems For Elliptic Lattice Equations in Honour of Professor Noumi For the Occasion of His 60Th Birthday”, Representation Theory, Special Functions and Painleve Equations - Rims 2015, Advanced Studies in Pure Mathematics, 76, eds. Konno H., Sakai H., Shiraishi J., Suzuki T., Yamada Y., Math Soc Japan, 2018, 487–525  mathscinet  isi
    16. Joshi N., Lustri C.J., Luu S., “Nonlinear Q-Stokes Phenomena For Q-Painleve i”, J. Phys. A-Math. Theor., 52:6 (2019), 065204  crossref  isi  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:681
    Full text:238
    References:61
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019