RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2007, Volume 62, Issue 5(377), Pages 151–152 (Mi umn8149)  

This article is cited in 7 scientific papers (total in 7 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

An example of a fractal set of plane directions having chaotic intersections with a fixed 3-periodic surface

R. De Leoa, I. A. Dynnikovb

a INFN — National Institute of Nuclear Physics, Sezione di Cagliari
b M. V. Lomonosov Moscow State University

DOI: https://doi.org/10.4213/rm8149

Full text: PDF file (324 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2007, 62:5, 990–992

Bibliographic databases:

MSC: Primary 57R30; Secondary 28A80
Presented: С. П. Новиков
Accepted: 20.08.2007

Citation: R. De Leo, I. A. Dynnikov, “An example of a fractal set of plane directions having chaotic intersections with a fixed 3-periodic surface”, Uspekhi Mat. Nauk, 62:5(377) (2007), 151–152; Russian Math. Surveys, 62:5 (2007), 990–992

Citation in format AMSBIB
\Bibitem{De Dyn07}
\by R.~De Leo, I.~A.~Dynnikov
\paper An example of a~fractal set of plane directions having chaotic intersections with a~fixed 3-periodic surface
\jour Uspekhi Mat. Nauk
\yr 2007
\vol 62
\issue 5(377)
\pages 151--152
\mathnet{http://mi.mathnet.ru/umn8149}
\crossref{https://doi.org/10.4213/rm8149}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2373758}
\zmath{https://zbmath.org/?q=an:1149.28301}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2007RuMaS..62..990D}
\elib{https://elibrary.ru/item.asp?id=25787460}
\transl
\jour Russian Math. Surveys
\yr 2007
\vol 62
\issue 5
\pages 990--992
\crossref{https://doi.org/10.1070/RM2007v062n05ABEH004461}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000253899500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-40749108075}


Linking options:
  • http://mi.mathnet.ru/eng/umn8149
  • https://doi.org/10.4213/rm8149
  • http://mi.mathnet.ru/eng/umn/v62/i5/p151

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Maltsev A.Ya., “Oscillation Phenomena and Experimental Determination of Exact Mathematical Stability Zones For Magneto-Conductivity in Metals Having Complicated Fermi Surfaces”, J. Exp. Theor. Phys., 125:5 (2017), 896–905  crossref  isi  scopus
    2. Maltsev A.Ya., “On the Analytical Properties of the Magneto-Conductivity in the Case of Presence of Stable Open Electron Trajectories on a Complex Fermi Surface”, J. Exp. Theor. Phys., 124:5 (2017), 805–831  crossref  isi  scopus
    3. A. Ya. Maltsev, S. P. Novikov, “The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems”, Proc. Steklov Inst. Math., 302 (2018), 279–297  mathnet  crossref  crossref  mathscinet  isi  elib
    4. Maltsev A.Ya., “The Second Boundaries of Stability Zones and the Angular Diagrams of Conductivity For Metals Having Complicated Fermi Surfaces”, J. Exp. Theor. Phys., 127:6 (2018), 1087–1111  crossref  isi  scopus
    5. A. Ya. Maltsev, S. P. Novikov, “Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter”, Russian Math. Surveys, 74:1 (2019), 141–173  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. Maltsev A.Ya., “the Complexity Classes of Angular Diagrams of the Metal Conductivity in Strong Magnetic Fields”, J. Exp. Theor. Phys., 129:1 (2019), 116–138  crossref  isi
    7. Novikov S.P. De Leo R. Dynnikov I.A. Maltsev A.Ya., “Theory of Dynamical Systems and Transport Phenomena in Normal Metals”, J. Exp. Theor. Phys., 129:4, SI (2019), 710–721  crossref  isi
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:455
    Full text:146
    References:44
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020