RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1997, Volume 52, Issue 2(314), Pages 155–156 (Mi umn828)  

This article is cited in 8 scientific papers (total in 8 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Perturbation theory with convergent series for functional integrals with respect to the Feynman measure

V. V. Belokurova, Yu. P. Solov'evb, E. T. Shavgulidzeb

a M. V. Lomonosov Moscow State University, Faculty of Physics
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

DOI: https://doi.org/10.4213/rm828

Full text: PDF file (199 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1997, 52:2, 392–393

Bibliographic databases:

MSC: 47A55, 40A05, 42A20, 42A50, 15A18, 47B32
Accepted: 07.06.1996

Citation: V. V. Belokurov, Yu. P. Solov'ev, E. T. Shavgulidze, “Perturbation theory with convergent series for functional integrals with respect to the Feynman measure”, Uspekhi Mat. Nauk, 52:2(314) (1997), 155–156; Russian Math. Surveys, 52:2 (1997), 392–393

Citation in format AMSBIB
\Bibitem{BelSolSha97}
\by V.~V.~Belokurov, Yu.~P.~Solov'ev, E.~T.~Shavgulidze
\paper Perturbation theory with convergent series for functional integrals with respect to the Feynman measure
\jour Uspekhi Mat. Nauk
\yr 1997
\vol 52
\issue 2(314)
\pages 155--156
\mathnet{http://mi.mathnet.ru/umn828}
\crossref{https://doi.org/10.4213/rm828}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1480147}
\zmath{https://zbmath.org/?q=an:0919.28009}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1997RuMaS..52..392B}
\transl
\jour Russian Math. Surveys
\yr 1997
\vol 52
\issue 2
\pages 392--393
\crossref{https://doi.org/10.1070/RM1997v052n02ABEH001785}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997XZ29900016}


Linking options:
  • http://mi.mathnet.ru/eng/umn828
  • https://doi.org/10.4213/rm828
  • http://mi.mathnet.ru/eng/umn/v52/i2/p155

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Belokurov, VV, “A summation method for divergent series”, Russian Mathematical Surveys, 54:3 (1999), 626  mathnet  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    2. Belokurov, VV, “A method of summation of divergent series to any accuracy”, Mathematical Notes, 68:1–2 (2000), 22  mathnet  mathscinet  zmath  isi
    3. V. V. Belokurov, Yu. P. Solov'ev, E. T. Shavgulidze, “Perturbation theory with convergent series for calculating physical quantities specified by finitely many terms of a divergent series in traditional perturbation theory”, Theoret. and Math. Phys., 123:3 (2000), 792–800  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. Belokurov, VV, “New perturbation theory for quantum field theory: Convergent series instead of asymptotic expansions”, Acta Applicandae Mathematicae, 68:1–3 (2001), 71  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    5. Drensky V., “Polynomial identity rings - Part A - Combinatorial aspects in PI-rings”, Polynomial Identity Rings, Advanced Courses in Mathematics Crm Barcelona, 2004, 1  mathscinet  zmath  isi
    6. “Introduction”, Mathematical Theory of Feynman Path Integrals: An Introduction, 523 (2008), 1  crossref  mathscinet  isi
    7. Sazonov V.K., “Convergent perturbation theory for lattice models with fermions”, Int. J. Mod. Phys. A, 31:13 (2016), 1650072  crossref  zmath  isi  elib  scopus
    8. Ivanov A.S., Sazonov V.K., “Convergent series for lattice models with polynomial interactions”, Nucl. Phys. B, 914 (2017), 43–61  crossref  mathscinet  zmath  isi  elib  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:297
    Full text:139
    References:35
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020