RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



УМН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


УМН, 1997, том 52, выпуск 2(314), страницы 161–162 (Mi umn831)  

Эта публикация цитируется в 92 научных статьях (всего в 92 статьях)

В Московском математическом обществе
Сообщения Московского математического общества

Алгеброиды Ли и гомологические векторные поля

А. Ю. Вайнтроб


DOI: https://doi.org/10.4213/rm831

Полный текст: PDF файл (220 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Russian Mathematical Surveys, 1997, 52:2, 428–429

Реферативные базы данных:

MSC: 17B55, 17B66
Принято редколлегией: 18.01.1997

Образец цитирования: А. Ю. Вайнтроб, “Алгеброиды Ли и гомологические векторные поля”, УМН, 52:2(314) (1997), 161–162; Russian Math. Surveys, 52:2 (1997), 428–429

Цитирование в формате AMSBIB
\RBibitem{Vai97}
\by А.~Ю.~Вайнтроб
\paper Алгеброиды Ли и~гомологические векторные поля
\jour УМН
\yr 1997
\vol 52
\issue 2(314)
\pages 161--162
\mathnet{http://mi.mathnet.ru/umn831}
\crossref{https://doi.org/10.4213/rm831}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1480150}
\zmath{https://zbmath.org/?q=an:0955.58017}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1997RuMaS..52..428V}
\transl
\jour Russian Math. Surveys
\yr 1997
\vol 52
\issue 2
\pages 428--429
\crossref{https://doi.org/10.1070/RM1997v052n02ABEH001802}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1997XZ29900033}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031507247}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/umn831
  • https://doi.org/10.4213/rm831
  • http://mi.mathnet.ru/rus/umn/v52/i2/p161

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Weinstein, A, “Poisson geometry”, Differential Geometry and Its Applications, 9:1–2 (1998), 213  crossref  mathscinet  zmath  isi  elib  scopus
    2. Carinena, JF, “Singular Lagrangians in supermechanics”, Differential Geometry and Its Applications, 18:1 (2003), 33  crossref  mathscinet  zmath  isi  scopus
    3. Lyakhovich, SL, “Characteristic classes of gauge systems”, Nuclear Physics B, 703:3 (2004), 419  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    4. Kosmann-Schwarzbach, Y, “Derived brackets”, Letters in Mathematical Physics, 69 (2004), 61  crossref  mathscinet  zmath  adsnasa  isi
    5. Severa, P, “Noncommutative differential forms and quantization of the odd symplectic category”, Letters in Mathematical Physics, 68:1 (2004), 31  crossref  mathscinet  zmath  adsnasa  isi  scopus
    6. Kapustin, A, “Open-string BRST cohomology for generalized complex branes”, Advances in Theoretical and Mathematical Physics, 9:4 (2005), 559  crossref  mathscinet  zmath  isi  scopus
    7. Santos, P, “Reduction of Lie algebroid structures”, International Journal of Geometric Methods in Modern Physics, 2:5 (2005), 965  crossref  mathscinet  zmath  isi  scopus
    8. Lyakhovich, SL, “BRST theory without Hamiltonian and Lagrangian”, Journal of High Energy Physics, 2005, no. 3, 011  crossref  isi
    9. Severa, P, “Poisson actions up to homotopy and their quantization”, Letters in Mathematical Physics, 77:2 (2006), 199  crossref  mathscinet  zmath  adsnasa  isi  scopus
    10. Lyakhovich, SL, “BRST quantization of quasisymplectic manifolds and beyond”, Journal of Mathematical Physics, 47:4 (2006), 043508  crossref  mathscinet  zmath  adsnasa  isi  scopus
    11. Bruzzo U., “Equivariant cohomology and localization for Lie algebroids and applications”, Differential Geometry and Physics, Nankai Tracts in Mathematics, 10, 2006, 152–159  crossref  mathscinet  zmath  isi
    12. Olga Kravchenko, “Strongly Homotopy Lie Bialgebras and Lie Quasi-bialgebras”, Lett Math Phys, 81:1 (2007), 19  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    13. Kapustin, A, “Topological sigma-models with H-flux and twisted generalized complex manifolds”, Advances in Theoretical and Mathematical Physics, 11:2 (2007), 261  crossref  mathscinet  zmath  isi
    14. Carinena, JF, “Reduction of Lagrangian mechanics on Lie algebroids”, Journal of Geometry and Physics, 57:3 (2007), 977  crossref  mathscinet  zmath  adsnasa  isi  scopus
    15. С. Л. Ляхович, Е. А. Мосман, А. А. Шарапов, “О характеристических классах $Q$-многообразий”, Функц. анализ и его прил., 42:1 (2008), 88–91  mathnet  crossref  mathscinet  zmath; S. L. Lyakhovich, E. A. Mosman, A. A. Sharapov, “On Characteristic Classes of $Q$-manifolds”, Funct. Anal. Appl., 42:1 (2008), 75–77  crossref  isi  elib
    16. Yvette Kosmann-Schwarzbach, “Poisson Manifolds, Lie Algebroids, Modular Classes: a Survey”, SIGMA, 4 (2008), 005, 30 pp.  mathnet  crossref  mathscinet  zmath
    17. Antunes, P, “Poisson Quasi-Nijenhuis Structures with Background”, Letters in Mathematical Physics, 86:1 (2008), 33  crossref  mathscinet  zmath  adsnasa  isi  scopus
    18. Crainic, M, “Deformations of Lie brackets: cohomological aspects”, Journal of the European Mathematical Society, 10:4 (2008), 1037  crossref  mathscinet  zmath  isi  scopus
    19. Terashima, Y, “On Poisson functions”, Journal of Symplectic Geometry, 6:1 (2008), 1  crossref  mathscinet  zmath  isi
    20. У. Бруццо, Л. Чирио, П. Росси, В. Н. Рубцов, “Эквивариантные когомологии и локализация для алгеброидов Ли”, Функц. анализ и его прил., 43:1 (2009), 22–36  mathnet  crossref  mathscinet  zmath; U. Bruzzo, L. Cirio, P. Rossi, V. N. Rubtsov, “Equivariant Cohomology and Localization for Lie Algebroids”, Funct. Anal. Appl., 43:1 (2009), 18–29  crossref  isi
    21. Bursztyn, H, “DIRAC GEOMETRY, QUASI-Poisson ACTIONS AND D/G-VALUED MOMENT MAPS”, Journal of Differential Geometry, 82:3–4 (2009), 501  crossref  mathscinet  zmath  isi  scopus
    22. Mehta, RA, “Q-ALGEBROIDS AND THEIR COHOMOLOGY”, Journal of Symplectic Geometry, 7:3 (2009), 263  crossref  mathscinet  zmath  isi  scopus
    23. Mehta, RA, “Q-GROUPOIDS AND THEIR COHOMOLOGY”, Pacific Journal of Mathematics, 242:2 (2009), 311  crossref  mathscinet  zmath  isi  scopus
    24. Grabowski, J, “Higher vector bundles and multi-graded symplectic manifolds”, Journal of Geometry and Physics, 59:9 (2009), 1285  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    25. Gracia-Saz, A, “Lie algebroid structures on double vector bundles and representation theory of Lie algebroids”, Advances in Mathematics, 223:4 (2010), 1236  crossref  mathscinet  zmath  isi  scopus  scopus
    26. Izu Vaisman, “Foliated Lie and Courant Algebroids”, Mediterr j math, 2010  crossref  mathscinet  isi  scopus  scopus
    27. Mosman E., Sharapov A., “All Stable Characteristic Classes of Homological Vector Fields”, Letters in Mathematical Physics, 94:3 (2010), 243–261  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    28. Bruce A.J., “Tulczyjew Triples and Higher Poisson/Schouten Structures on Lie Algebroids”, Reports on Mathematical Physics, 66:2 (2010), 251–276  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    29. Lyakhovich S.L., Mosman E.A., Sharapov A.A., “Characteristic classes of Q-manifolds: Classification and applications”, Journal of Geometry and Physics, 60:5 (2010), 729–759  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    30. Cattaneo A.S., Qiu J., Zabzine M., “2D and 3D topological field theories for generalized complex geometry”, Advances in Theoretical and Mathematical Physics, 14:2 (2010), 695–725  crossref  mathscinet  zmath  isi  scopus  scopus
    31. Zucchini R., “The gauging of BV algebras”, Journal of Geometry and Physics, 60:11 (2010), 1860–1880  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    32. Voronov T.T., “Q-manifolds and Higher Analogs of Lie Algebroids”, XXIX Workshop on Geometric Methods in Physics, AIP Conference Proceedings, 1307, 2010, 191–202  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    33. А. В. Киселев, Й. В. ван де Лёр, “Вариационные алгеброиды Ли и гомологические эволюционные векторные поля”, ТМФ, 167:3 (2011), 432–447  mathnet  crossref  adsnasa; A. V. Kiselev, J. W. van de Leur, “Variational Lie algebroids and homological evolutionary vector fields”, Theoret. and Math. Phys., 167:3 (2011), 772–784  crossref  isi
    34. Antunes P., Laurent-Gengoux C., “Jacobi structures in supergeometric formalism”, J Geom Phys, 61:11 (2011), 2254–2266  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    35. Mackenzie K.C.H., “Ehresmann doubles and Drinfel'd doubles for Lie algebroids and Lie bialgebroids”, J Reine Angew Math, 658 (2011), 193–245  crossref  mathscinet  zmath  isi  scopus  scopus
    36. Cattaneo A.S., Schaetz F., “Introduction To Supergeometry”, Rev Math Phys, 23:6 (2011), 669–690  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    37. Bruce A.J., “FROM L-infinity-ALGEBROIDS TO HIGHER SCHOUTEN/Poisson STRUCTURES”, Rep Math Phys, 67:2 (2011), 157–177  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    38. Mehta R.A., “On homotopy Poisson actions and reduction of symplectic Q-manifolds”, Differential Geom Appl, 29:3 (2011), 319–328  crossref  mathscinet  zmath  isi  scopus  scopus
    39. Li-Bland D., Severa P., “Quasi-Hamiltonian Groupoids and Multiplicative Manin Pairs”, Int Math Res Not, 2011, no. 10, 2295–2350  mathscinet  zmath  isi
    40. Arthemy V Kiselev, “Homological evolutionary vector fields in Korteweg–de Vries, Liouville, Maxwell, and several other models”, J. Phys.: Conf. Ser, 343 (2012), 012058  crossref  isi  scopus  scopus
    41. Voronov T.T., “Q-Manifolds and Mackenzie Theory”, Commun. Math. Phys., 315:2 (2012), 279–310  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    42. Velez A.Q., “Boundary Coupling of Lie Algebroid Poisson SIGMA Models and Representations Up to Homotopy”, Lett. Math. Phys., 102:1 (2012), 31–64  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    43. Voronov T.T., “On a Non-Abelian Poincaré Lemma”, Proc. Amer. Math. Soc., 140:8 (2012), 2855–2872  crossref  mathscinet  zmath  isi  scopus  scopus
    44. Cardona A., “Extended Symmetries and Poisson Algebras Associated to Twisted Dirac Structures”, Analysis, Geometry and Quantum Field Theory, Contemporary Mathematics, 584, eds. Aldana C., Braverman M., Lochum B., Jimenez C., Amer Mathematical Soc, 2012, 117–128  crossref  mathscinet  zmath  isi
    45. Grabowski J., “Modular Classes of Skew Algebroid Relations”, Transform. Groups, 17:4 (2012), 989–1010  crossref  mathscinet  zmath  isi  scopus  scopus
    46. Yvette Kosmann-Schwarzbach, “Courant Algebroids. A Short History”, SIGMA, 9 (2013), 014, 8 pp.  mathnet  crossref  mathscinet
    47. Chenchang Zhu, Marco Zambon, “Distributions and quotients on degree $1$ NQ-manifolds and Lie algebroids”, JGM, 4:4 (2013), 469  crossref  mathscinet  isi  scopus  scopus
    48. F. Bonechi, J. Qiu, M. Zabzine, “Wilson Lines from Representations of NQ-Manifolds”, International Mathematics Research Notices, 2013  crossref  mathscinet  isi  scopus  scopus
    49. Paulo Antunes, Camille Laurent-Gengoux, Joana Nunes da Costa, “Hierarchies and compatibility on Courant algebroids”, Pacific J. Math, 261:1 (2013), 1  crossref  mathscinet  zmath  isi  scopus  scopus
    50. JANUSZ GRABOWSKI, “BRACKETS”, Int. J. Geom. Methods Mod. Phys, 2013, 1360001  crossref  mathscinet  isi  scopus  scopus
    51. P. ANTUNES, J. M. NUNES DA COSTA, “HYPERSTRUCTURES ON Lie ALGEBROIDS”, Rev. Math. Phys, 2013, 1343003  crossref  mathscinet  zmath  isi  scopus  scopus
    52. Grabowski J., “Graded Contact Manifolds and Contact Courant Algebroids”, J. Geom. Phys., 68 (2013), 27–58  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    53. Bouwknegt P., Jurco B., “Aksz Construction of Topological Open P-Brane Action and Nambu Brackets”, Rev. Math. Phys., 25:3 (2013), 1330004  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    54. Cattaneo A.S., Zambon M., “A Supergeometric Approach to Poisson Reduction”, Commun. Math. Phys., 318:3 (2013), 675–716  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    55. Zambon M., Zhu Ch., “Higher Lie Algebra Actions on Lie Algebroids”, J. Geom. Phys., 64 (2013), 155–173  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    56. Salnikov V., Strobl T., “Dirac SIGMA Models From Gauging”, J. High Energy Phys., 2013, no. 11, 110  crossref  isi  scopus  scopus
    57. A.J.ames Bruce, “Odd Jacobi Manifolds and Loday-Poisson Brackets”, Journal of Mathematics, 2014 (2014), 1  crossref  mathscinet  zmath  scopus  scopus
    58. A.V.. Kiselev, A.O.. Krutov, “Non-Abelian Lie algebroids over jet spaces”, Journal of Nonlinear Mathematical Physics, 21:2 (2014), 188  crossref  mathscinet  isi  scopus  scopus
    59. José V. Beltrán, Juan Monterde, José A. Vallejo, “Quillen superconnections and connections on supermanifolds”, Journal of Geometry and Physics, 2014  crossref  mathscinet  isi  scopus  scopus
    60. Janusz Grabowski, “Modular classes revisited”, Int. J. Geom. Methods Mod. Phys, 2014, 1460042  crossref  mathscinet  zmath  isi  scopus  scopus
    61. Adam Biggs, “The Existence of a Canonical Lifting of Even Poisson Structures to the Algebra of Densities”, Lett Math Phys, 2014  crossref  mathscinet  isi  scopus  scopus
    62. Noriaki Ikeda, Xiaomeng Xu, “Canonical functions, differential graded symplectic pairs in supergeometry, and Alexandrov-Kontsevich-Schwartz-Zaboronsky sigma models with boundaries”, J. Math. Phys, 55:11 (2014), 113505  crossref  mathscinet  zmath  isi  scopus  scopus
    63. Lavau S., Samtleben H., Strobl T., “Hidden Q-Structure and Lie 3-Algebra For Non-Abelian Superconformal Models in Six Dimensions”, J. Geom. Phys., 86 (2014), 497–533  crossref  mathscinet  zmath  isi  scopus  scopus
    64. Mehta R.A., “Lie Algebroid Modules and Representations Up To Homotopy”, Indag. Math.-New Ser., 25:5, SI (2014), 1122–1134  crossref  mathscinet  zmath  isi  scopus  scopus
    65. Salnikov V., “Graded Geometry in Gauge Theories and Beyond”, J. Geom. Phys., 87 (2015), 422–431  crossref  mathscinet  zmath  isi  scopus  scopus
    66. Gruetzmann M., Strobl T., “General Yang-Mills Type Gauge Theories For P-Form Gauge Fields: From Physics-Based Ideas To a Mathematical Framework Or From Bianchi Identities To Twisted Courant Algebroids”, Int. J. Geom. Methods Mod. Phys., 12:1 (2015), 1550009  crossref  mathscinet  zmath  isi
    67. Kotov A., Strobl T., “Characteristic Classes Associated To Q-Bundles”, Int. J. Geom. Methods Mod. Phys., 12:1 (2015), 1550006  crossref  mathscinet  zmath  isi
    68. Pavel Mnev, “A Construction of Observables for AKSZ Sigma Models”, Lett Math Phys, 2015  crossref  mathscinet  isi  scopus  scopus
    69. Andrew James Bruce, Katarzyna Grabowska, Janusz Grabowski, “Graded Bundles in the Category of Lie Groupoids”, SIGMA, 11 (2015), 090, 25 pp.  mathnet  crossref
    70. Mehta R.A., Stienon M., Xu P., “the Atiyah Class of a Dg-Vector Bundle”, 353, no. 4, 2015, 357–362  crossref  mathscinet  zmath  isi  scopus  scopus
    71. Bruce A.J., Grabowska K., Grabowski J., “Linear Duals of Graded Bundles and Higher Analogues of (Lie) Algebroids”, 101, 2016, 71–99  crossref  mathscinet  zmath  isi  scopus  scopus
    72. Kotov A., Strobl T., “Gauging Without Initial Symmetry”, 99, 2016, 184–189  crossref  mathscinet  zmath  isi  scopus  scopus
    73. Rengifo C., “On higher dimensional exact Courant algebroids”, J. Geom. Phys., 107 (2016), 1–14  crossref  mathscinet  zmath  isi  scopus
    74. Antunes P., Nunes da Costa J.M., “Hypersymplectic structures with torsion on Lie algebroids”, J. Geom. Phys., 104 (2016), 39–53  crossref  mathscinet  zmath  isi  scopus
    75. Ritter P., Samann Ch., “L∞-algebra models and higher Chern–Simons theories”, Rev. Math. Phys., 28:9 (2016), 1650021  crossref  mathscinet  zmath  isi  elib  scopus
    76. Bruce A.J., “Modular Classes of Q-Manifolds: a Review and Some Applications”, Arch. Math.-Brno, 53:4 (2017), 203–219  crossref  mathscinet  zmath  isi  scopus  scopus
    77. Fairon M., “Introduction to Graded Geometry”, Eur. J. Math., 3:2 (2017), 208–222  crossref  mathscinet  zmath  isi  scopus  scopus
    78. Coueraud B., “Dissections and Automorphisms of Regular Courant Algebroids”, J. Geom. Phys., 119 (2017), 224–255  crossref  mathscinet  zmath  isi  scopus  scopus
    79. Merati S., Farhangdoost M.R., “Representation Up to Homotopy of Hom–Lie Algebroids”, Int. J. Geom. Methods Mod. Phys., 15:5 (2018), 1850074  crossref  mathscinet  zmath  isi  scopus  scopus
    80. Gracia-Saz A., Lean M.J., Mackenzie K.C.H., Mehta R.A., “Double Lie Algebroids and Representations Up to Homotopy”, J. Homotopy Relat. Struct., 13:2 (2018), 287–319  crossref  mathscinet  zmath  isi  scopus  scopus
    81. Kiselev A.V., “The Calculus of Multivectors on Noncommutative Jet Spaces”, J. Geom. Phys., 130 (2018), 130–167  crossref  mathscinet  zmath  isi  scopus  scopus
    82. Merati S., Farhangdoost M.R., “Representation Up to Homotopy of Double Algebroids and Their Transgression Classes”, J. Dyn. Syst. Geom. Theor., 16:1 (2018), 89–99  crossref  mathscinet  isi
    83. Michał Jóźwikowski, Mikołaj Rotkiewicz, “Higher-Order Analogs of Lie Algebroids via Vector Bundle Comorphisms”, SIGMA, 14 (2018), 135, 46 pp.  mathnet  crossref
    84. Merati S., Farhangdoost M.R., “Representation and Central Extension of Hone-Lie Algebroids”, J. Algebra. Appl., 17:11 (2018), 1850219  crossref  mathscinet  zmath  isi  scopus
    85. Bruce A.J., Grabowski J., Vitagliano L., “Representations Up to Homotopy From Weighted Lie Algebroids”, J. Lie Theory, 28:3 (2018), 711–733  mathscinet  zmath  isi
    86. Kotov A., Strobl T., “Universal Cartan-Lie Algebroid of An Anchored Bundle With Connection and Compatible Geometries”, J. Geom. Phys., 135 (2019), 1–6  crossref  mathscinet  zmath  isi  scopus
    87. Ikeda N., Strobl T., “On the Relation of Lie Algebroids to Constrained Systems and Their Bv/Bfv Formulation”, Ann. Henri Poincare, 20:2 (2019), 527–541  crossref  mathscinet  zmath  isi  scopus
    88. Vishnyakova E., “Graded Manifolds of Type and N-Fold Vector Bundles”, Lett. Math. Phys., 109:2 (2019), 243–293  crossref  mathscinet  zmath  isi  scopus
    89. Bruce A.J., “Connections Adapted to Non-Negatively Graded Structures”, Int. J. Geom. Methods Mod. Phys., 16:2 (2019), 1950021  crossref  mathscinet  zmath  isi  scopus
    90. Kotov A., Strobl T., “Lie Algebroids, Gauge Theories, and Compatible Geometrical Structures”, Rev. Math. Phys., 31:4 (2019), 1950015  crossref  mathscinet  isi  scopus
    91. Bruce A.J., Grabowski J., “Pre-Courant Algebroids”, J. Geom. Phys., 142 (2019), 254–273  crossref  isi
    92. Campos R., “Homotopy Equivalence of Shifted Cotangent Bundles”, J. Lie Theory, 29:3 (2019), 629–646  isi
  • Успехи математических наук Russian Mathematical Surveys
    Просмотров:
    Эта страница:851
    Полный текст:409
    Литература:77
    Первая стр.:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019