RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2007, Volume 62, Issue 6(378), Pages 87–156 (Mi umn8515)  

This article is cited in 3 scientific papers (total in 3 papers)

Automorphism groups of fields, and their representations

M. Z. Rovinskiiab

a Steklov Mathematical Institute, Russian Academy of Sciences
b Independent University of Moscow

Abstract: This article contains a study of the automorphism group $G$ of an extension $F|k$ of an algebraically closed field, and of smooth linear and semilinear representations of $G$. It is explained how the representation theory of $G$ is connected with birational geometry, algebraic cycles, motives, and other geometric questions.

DOI: https://doi.org/10.4213/rm8515

Full text: PDF file (1179 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2007, 62:6, 1121–1186

Bibliographic databases:

UDC: 512.546.4+512.623.23+512.73
MSC: Primary 12F10, 20B27, 20F29; Secondary 11F70, 14C25, 14C30, 14E07, 22D45
Received: 04.08.2007

Citation: M. Z. Rovinskii, “Automorphism groups of fields, and their representations”, Uspekhi Mat. Nauk, 62:6(378) (2007), 87–156; Russian Math. Surveys, 62:6 (2007), 1121–1186

Citation in format AMSBIB
\Bibitem{Rov07}
\by M.~Z.~Rovinskii
\paper Automorphism groups of fields, and their representations
\jour Uspekhi Mat. Nauk
\yr 2007
\vol 62
\issue 6(378)
\pages 87--156
\mathnet{http://mi.mathnet.ru/umn8515}
\crossref{https://doi.org/10.4213/rm8515}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2382476}
\zmath{https://zbmath.org/?q=an:1145.12002}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2007RuMaS..62.1121R}
\elib{http://elibrary.ru/item.asp?id=25787477}
\transl
\jour Russian Math. Surveys
\yr 2007
\vol 62
\issue 6
\pages 1121--1186
\crossref{https://doi.org/10.1070/RM2007v062n06ABEH004478}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000255833100002}
\elib{http://elibrary.ru/item.asp?id=13534447}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44449083422}


Linking options:
  • http://mi.mathnet.ru/eng/umn8515
  • https://doi.org/10.4213/rm8515
  • http://mi.mathnet.ru/eng/umn/v62/i6/p87

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. U. Jannsen, M. Rovinsky, “Smooth representations and sheaves”, Mosc. Math. J., 10:1 (2010), 189–214  mathnet  mathscinet
    2. M. Rovinsky, “Stable birational invariants with Galois descent and differential forms”, Mosc. Math. J., 15:4 (2015), 777–803  mathnet  mathscinet
    3. Rovinsky M., “Semilinear Representations of Symmetric Groups and of Automorphism Groups of Universal Domains”, Sel. Math.-New Ser., 24:3 (2018), 2319–2349  crossref  mathscinet  zmath  isi  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:443
    Full text:185
    References:57
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019