RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1997, Volume 52, Issue 6(318), Pages 171–172 (Mi umn907)  

This article is cited in 14 scientific papers (total in 14 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

On compatible Poisson structures of hydrodynamic type

O. I. Mokhov

Landau Institute for Theoretical Physics, Centre for Non-linear Studies

DOI: https://doi.org/10.4213/rm907

Full text: PDF file (226 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1997, 52:6, 1310–1311

Bibliographic databases:

MSC: 70G45, 70Hxx, 37Jxx
Accepted: 25.11.1997

Citation: O. I. Mokhov, “On compatible Poisson structures of hydrodynamic type”, Uspekhi Mat. Nauk, 52:6(318) (1997), 171–172; Russian Math. Surveys, 52:6 (1997), 1310–1311

Citation in format AMSBIB
\Bibitem{Mok97}
\by O.~I.~Mokhov
\paper On compatible Poisson structures of hydrodynamic type
\jour Uspekhi Mat. Nauk
\yr 1997
\vol 52
\issue 6(318)
\pages 171--172
\mathnet{http://mi.mathnet.ru/umn907}
\crossref{https://doi.org/10.4213/rm907}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1611314}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1997RuMaS..52.1310M}
\transl
\jour Russian Math. Surveys
\yr 1997
\vol 52
\issue 6
\pages 1310--1311
\crossref{https://doi.org/10.1070/RM1997v052n06ABEH002173}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000074185000017}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0002366508}


Linking options:
  • http://mi.mathnet.ru/eng/umn907
  • https://doi.org/10.4213/rm907
  • http://mi.mathnet.ru/eng/umn/v52/i6/p171

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Mokhov, OI, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Mathematical Surveys, 53:3 (1998), 515  mathnet  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    2. Mokhov, OI, “On compatible potential deformations of Frobenius algebras and associativity equations”, Russian Mathematical Surveys, 53:2 (1998), 396  mathnet  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    3. O. I. Mokhov, “Compatible Poisson Structures of Hydrodynamic Type and Associativity Equations”, Proc. Steklov Inst. Math., 225 (1999), 269–284  mathnet  mathscinet  zmath
    4. I. A. Strachan, “Degenerate bi-Hamiltonian structures of the hydrodynamic type”, Theoret. and Math. Phys., 122:2 (2000), 247–255  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. O. I. Mokhov, “Compatible and Almost Compatible Pseudo-Riemannian Metrics”, Funct. Anal. Appl., 35:2 (2001), 100–110  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. O. I. Mokhov, “Compatible Dubrovin–Novikov Hamiltonian operators and the Lie derivative”, Russian Math. Surveys, 56:6 (2001), 1175–1176  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Fordy, AP, “On a special class of compatible Poisson structures of hydrodynamic type”, Physica D-Nonlinear Phenomena, 152 (2001), 475  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    8. O. I. Mokhov, “Integrability of the Equations for Nonsingular Pairs of Compatible Flat Metrics”, Theoret. and Math. Phys., 130:2 (2002), 198–212  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    9. O. I. Mokhov, “Compatible Dubrovin–Novikov Hamiltonian Operators, Lie Derivative, and Integrable Systems of Hydrodynamic Type”, Theoret. and Math. Phys., 133:2 (2002), 1557–1564  mathnet  crossref  crossref  mathscinet  isi  elib
    10. O. I. Mokhov, “Integrable bi-Hamiltonian systems of hydrodynamic type”, Russian Math. Surveys, 57:1 (2002), 153–154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. O. I. Mokhov, “Integrable bi-Hamiltonian hierarchies generated by compatible metrics of constant Riemannian curvature”, Russian Math. Surveys, 57:5 (2002), 999–1001  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    12. O. I. Mokhov, “The Liouville Canonical Form for Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies”, Funct. Anal. Appl., 37:2 (2003), 103–113  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    13. O. I. Mokhov, “Quasi-Frobenius Algebras and Their Integrable $N$-Parameter Deformations Generated by Compatible $(N\times N)$ Metrics of Constant Riemannian Curvature”, Theoret. and Math. Phys., 136:1 (2003), 908–916  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    14. O. I. Mokhov, “Pencils of compatible metrics and integrable systems”, Russian Math. Surveys, 72:5 (2017), 889–937  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:307
    Full text:122
    References:28
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019