RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1997, Volume 52, Issue 6(318), Pages 187–188 (Mi umn915)  

This article is cited in 9 scientific papers (total in 9 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

The global Weierstrass representation and its spectrum

I. A. Taimanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

DOI: https://doi.org/10.4213/rm915

Full text: PDF file (250 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1997, 52:6, 1330–1332

Bibliographic databases:

MSC: 14H55, 14H45
Accepted: 03.10.1997

Citation: I. A. Taimanov, “The global Weierstrass representation and its spectrum”, Uspekhi Mat. Nauk, 52:6(318) (1997), 187–188; Russian Math. Surveys, 52:6 (1997), 1330–1332

Citation in format AMSBIB
\Bibitem{Tai97}
\by I.~A.~Taimanov
\paper The global Weierstrass representation and its spectrum
\jour Uspekhi Mat. Nauk
\yr 1997
\vol 52
\issue 6(318)
\pages 187--188
\mathnet{http://mi.mathnet.ru/umn915}
\crossref{https://doi.org/10.4213/rm915}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1611346}
\zmath{https://zbmath.org/?q=an:0932.58034}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1997RuMaS..52.1330T}
\transl
\jour Russian Math. Surveys
\yr 1997
\vol 52
\issue 6
\pages 1330--1332
\crossref{https://doi.org/10.1070/RM1997v052n06ABEH002189}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000074185000027}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031330567}


Linking options:
  • http://mi.mathnet.ru/eng/umn915
  • https://doi.org/10.4213/rm915
  • http://mi.mathnet.ru/eng/umn/v52/i6/p187

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. A. Taimanov, “The Weierstrass Representation of Closed Surfaces in $\mathbb{R}^3$”, Funct. Anal. Appl., 32:4 (1998), 258–267  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Konopelchenko, BG, “Quantum effects for extrinsic geometry of strings via the generalized Weierstrass representation”, Physics Letters B, 444:3–4 (1998), 299  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    3. I. A. Taimanov, “The Weierstrass Representation of Spheres in $\mathbb R^3$, the Willmore Numbers, and Soliton Spheres”, Proc. Steklov Inst. Math., 225 (1999), 322–343  mathnet  mathscinet  zmath
    4. Konopelchenko, BG, “Generalized Weierstrass representation for surfaces in multi-dimensional Riemann spaces”, Journal of Geometry and Physics, 29:4 (1999), 319  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    5. Bobenko, AI, “Painlevé equations in the differential geometry of surfaces”, Painleve Equations in Differential Geometry of Surfaces H), 1753 (2000), 1  crossref  mathscinet  isi
    6. Konopelchenko, BG, “Induced surfaces and their integrable dynamics II. Generalized Weierstrass representations in 4-D spaces and deformations via DS hierarchy”, Studies in Applied Mathematics, 104:2 (2000), 129  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    7. Varlamov, VV, “Generalized Weierstrass representation for surfaces in terms of Dirac-Hestenes spinor field”, Journal of Geometry and Physics, 32:3 (2000), 241  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    8. Konopelchenko, BG, “Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy”, Annals of Global Analysis and Geometry, 18:1 (2000), 61  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    9. G Landolfi, “New results on the Canham–Helfrich membrane model via the generalized Weierstrass representation”, J Phys A Math Gen, 36:48 (2003), 11937  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:247
    Full text:92
    References:50
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019