RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2008, Volume 63, Issue 2(380), Pages 157–158 (Mi umn9176)  

This article is cited in 4 scientific papers (total in 4 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Finite unions of balls in $\mathbb C^n$ are rationally convex

S. Yu. Nemirovskiab

a Steklov Mathematical Institute, Russian Academy of Sciences
b Ruhr-Universität Bochum

DOI: https://doi.org/10.4213/rm9176

Full text: PDF file (367 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2008, 63:2, 381–382

Bibliographic databases:

Document Type: Article
MSC: Primary 32E30; Secondary 32U05
Presented: A. G. Sergeev
Accepted: 24.01.2008

Citation: S. Yu. Nemirovski, “Finite unions of balls in $\mathbb C^n$ are rationally convex”, Uspekhi Mat. Nauk, 63:2(380) (2008), 157–158; Russian Math. Surveys, 63:2 (2008), 381–382

Citation in format AMSBIB
\Bibitem{Nem08}
\by S.~Yu.~Nemirovski
\paper Finite unions of balls in~$\mathbb C^n$ are rationally convex
\jour Uspekhi Mat. Nauk
\yr 2008
\vol 63
\issue 2(380)
\pages 157--158
\mathnet{http://mi.mathnet.ru/umn9176}
\crossref{https://doi.org/10.4213/rm9176}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2640558}
\zmath{https://zbmath.org/?q=an:1181.32016}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2008RuMaS..63..381N}
\elib{http://elibrary.ru/item.asp?id=20425097}
\transl
\jour Russian Math. Surveys
\yr 2008
\vol 63
\issue 2
\pages 381--382
\crossref{https://doi.org/10.1070/RM2008v063n02ABEH004518}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000259031200014}
\elib{http://elibrary.ru/item.asp?id=13565606}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52049095766}


Linking options:
  • http://mi.mathnet.ru/eng/umn9176
  • https://doi.org/10.4213/rm9176
  • http://mi.mathnet.ru/eng/umn/v63/i2/p157

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kai Cieliebak, Yakov Eliashberg, “The topology of rationally and polynomially convex domains”, Invent. math, 2014  crossref  mathscinet  isi  scopus
    2. Eliashberg Ya., “Recent Advances in Symplectic Flexibility”, Bull. Amer. Math. Soc., 52:1 (2015), 1–26  crossref  mathscinet  zmath  isi  scopus
    3. Stefan Nemirovski, Kyler Siegel, “Rationally convex domains and singular Lagrangian surfaces in
      $$\mathbb {C}^2$$
      C 2”, Invent. math, 2015  crossref  mathscinet  isi  scopus
    4. Gupta P., Shafikov R., “Rational and Polynomial Density on Compact Real Manifolds”, Int. J. Math., 28:5 (2017), 1750040  crossref  mathscinet  zmath  isi  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:392
    Full text:110
    References:42
    First page:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019