|
This article is cited in 58 scientific papers (total in 58 papers)
Log canonical thresholds of smooth Fano threefolds
I. A. Cheltsov, K. A. Shramov Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
The complex singularity exponent is a local invariant of a holomorphic function determined by the integrability of fractional powers of the function. The log canonical thresholds of effective $\mathbb{Q}$-divisors on normal algebraic varieties are algebraic counterparts of complex singularity exponents. For a Fano variety, these invariants have global analogues. In the former case, it is the so-called $\alpha$-invariant of Tian; in the latter case, it is the global log canonical threshold of the Fano variety, which is the infimum of log canonical thresholds of all effective $\mathbb{Q}$-divisors numerically equivalent to the anticanonical divisor. An appendix to this paper contains a proof that the global log canonical threshold of a smooth Fano variety coincides with its $\alpha$-invariant of Tian. The purpose of the paper is to compute the global log canonical thresholds of smooth Fano threefolds (altogether, there are 105 deformation families of such threefolds). The global log canonical thresholds are computed for every smooth threefold in 64 deformation families, and the global log canonical thresholds are computed for a general threefold in 20 deformation families. Some bounds for the global log canonical thresholds are computed for 14 deformation families. Appendix A is due to J.-P. Demailly.
DOI:
https://doi.org/10.4213/rm9235
Full text:
PDF file (1406 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 2008, 63:5, 859–958
Bibliographic databases:
UDC:
512.76
MSC: Primary 14J45; Secondary 14J17, 32Q20 Received: 26.07.2008
Citation:
I. A. Cheltsov, K. A. Shramov, “Log canonical thresholds of smooth Fano threefolds”, Uspekhi Mat. Nauk, 63:5(383) (2008), 73–180; Russian Math. Surveys, 63:5 (2008), 859–958
Citation in format AMSBIB
\Bibitem{CheShr08}
\by I.~A.~Cheltsov, K.~A.~Shramov
\paper Log canonical thresholds of smooth Fano threefolds
\jour Uspekhi Mat. Nauk
\yr 2008
\vol 63
\issue 5(383)
\pages 73--180
\mathnet{http://mi.mathnet.ru/umn9235}
\crossref{https://doi.org/10.4213/rm9235}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2484031}
\zmath{https://zbmath.org/?q=an:1167.14024}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2008RuMaS..63..859C}
\elib{https://elibrary.ru/item.asp?id=11754076}
\transl
\jour Russian Math. Surveys
\yr 2008
\vol 63
\issue 5
\pages 859--958
\crossref{https://doi.org/10.1070/RM2008v063n05ABEH004561}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000264244400002}
\elib{https://elibrary.ru/item.asp?id=13586625}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65649106885}
Linking options:
http://mi.mathnet.ru/eng/umn9235https://doi.org/10.4213/rm9235 http://mi.mathnet.ru/eng/umn/v63/i5/p73
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Pukhlikov V A., “Canonical and Log Canonical Thresholds of Multiple Projective Spaces”, Eur. J. Math.
-
Cheltsov I., Park J., Shramov C., “Delta Invariants of Singular Del Pezzo Surfaces”, J. Geom. Anal.
-
Cheltsov I., “Log canonical thresholds of del Pezzo surfaces”, Geom. Funct. Anal., 18:4 (2008), 1118–1144
-
I. A. Cheltsov, K. A. Shramov, “Extremal Metrics on del Pezzo Threefolds”, Proc. Steklov Inst. Math., 264 (2009), 30–44
-
Cheltsov I., “On singular cubic surfaces”, Asian J. Math., 13:2 (2009), 191–214
-
A. V. Pukhlikov, “Existence of the Kähler–Einstein Metric on Certain Fano Complete Intersections”, Math. Notes, 88:4 (2010), 552–558
-
Cheltsov I., Park Jihun, Shramov C., “Exceptional del Pezzo hypersurfaces”, J. Geom. Anal., 20:4 (2010), 787–816
-
Shi Yalong, “On the alpha-invariants of cubic surfaces with Eckardt points”, Adv. Math., 225:3 (2010), 1285–1307
-
Park Jihun, Won Joonyeong, “Log-canonical thresholds on del Pezzo surfaces of degrees $\ge 2$”, Nagoya Math. J., 200 (2010), 1–26
-
Park Jihun, Won Joonyeong, “Log canonical thresholds on Gorenstein canonical del Pezzo surfaces”, Proc. Edin. Math. Soc. (2), 54:1 (2011), 187–219
-
Nill B., Paffenholz A., “Examples of Kähler–Einstein toric Fano manifolds associated to non-symmetric reflexive polytopes”, Beitr. Algebra Geom., 52:2 (2011), 297–304
-
Cheltsov I., Shramov C., “On exceptional quotient singularities”, Geom. Topol., 15:4 (2011), 1843–1882
-
Cheltsov I., Shramov C., “Six-dimensional exceptional quotient singularities”, Math. Res. Lett., 18:6 (2011), 1121–1139
-
Sakovics D., “Weakly-exceptional quotient singularities”, Cent. Eur. J. Math., 10:3 (2012), 885–902
-
Odaka Yu., Sano Yu., “Alpha invariant and K-stability of Q-Fano varieties”, Adv. Math., 229:5 (2012), 2818–2834
-
Tosatti V., “Kähler-Einstein metrics on Fano surfaces”, Expo. Math., 30:1 (2012), 11–31
-
Cheltsov I., Shramov C., “Three embeddings of the Klein simple group into the Cremona group of rank three”, Transform. Groups, 17:2 (2012), 303–350
-
Mustata M., “Impanga Lecture Notes on Log Canonical Thresholds”, Contribution to Algebraic Geometry: Impanga Lecture Note, EMS Ser. Congr. Rep., ed. Pragacz P., Eur. Math. Soc., 2012, 407–442
-
Sano Yu., “Multiplier Ideal Sheaves and the Kahler-Ricci Flow on Toric Fano Manifolds with Large Symmetry”, Commun. Anal. Geom., 20:2 (2012), 341–368
-
Cheltsov I., Wilson A., “Del Pezzo surfaces with many symmetries”, J. Geom. Anal., 23:3 (2013), 1257–1289
-
Odaka Y., Okada T., “Birational superrigidity and slope stability of Fano manifolds”, Math. Z., 275:3-4 (2013), 1109–1119
-
Süß H., “Kähler–Einstein metrics on symmetric Fano $T$-varieties”, Adv. Math., 246 (2013), 100–113
-
Cheltsov I., Shramov C., “Del Pezzo Zoo”, Exp. Math., 22:3 (2013), 313–326
-
I. A. Cheltsov, K. A. Shramov, “Sporadic simple groups and quotient singularities”, Izv. Math., 77:4 (2013), 846–854
-
Cheltsov I., Kosta D., “Computing $\alpha$-invariants of singular del Pezzo surfaces”, J. Geom. Anal., 24:2 (2014), 798–842
-
Cheltsov I. Shramov C., “Five Embeddings of One Simple Group”, Trans. Am. Math. Soc., 366:3 (2014), 1289–1331
-
Haozhao Li, Yalong Shi, Yi Yao, “A criterion for the properness of the $K$-energy in a general Kähler class”, Math. Ann, 2014
-
Martinez-Garcia J., “Log Canonical Thresholds of Del Pezzo Surfaces in Characteristic P”, Manuscr. Math., 145:1-2 (2014), 89–110
-
Cheltsov I., Shramov C., “Weakly-Exceptional Singularities in Higher Dimensions”, J. Reine Angew. Math., 689 (2014), 201–241
-
I. A. Cheltsov, “Two local inequalities”, Izv. Math., 78:2 (2014), 375–426
-
In-Kyun Kim, Jihun Park, “Log Canonical Thresholds of Complete Intersection Log Del Pezzo Surfaces”, Proceedings of the Edinburgh Mathematical Society, 2015, 1
-
Dervan R., “Alpha Invariants and K-Stability For General Polarizations of Fano Varieties”, no. 16, 2015, 7162–7189
-
Delcroix T., “Alpha-Invariant of Toric Line Bundles”, 114, no. 1, 2015, 13–27
-
Cheltsov I.A., Rubinstein Ya.A., “Asymptotically log Fano varieties”, Adv. Math., 285 (2015), 1241–1300
-
Song J., Wang X., “The greatest Ricci lower bound, conical Einstein metrics and Chern number inequality”, Geom. Topol., 20:1 (2016), 49–102
-
Cheltsov I., Park J., Won J., “Affine cones over smooth cubic surfaces”, J. Eur. Math. Soc., 18:7 (2016), 1537–1564
-
Spotti C., Sun S., Yao Ch., “Existence and deformations of Kähler–Einstein metrics on smoothable $\mathbb{Q}$ -Fano varieties”, Duke Math. J., 165:16 (2016), 3043–3083
-
Tiep Ph.H., “the Alpha-Invariant and Thompson'S Conjecture”, Forum Math. Pi, 4 (2016), e5
-
Cheltsov I., Martinez-Garcia J., “Dynamic Alpha-invariants of Del Pezzo Surfaces”, Int. Math. Res. Notices, 2016, no. 10, 2994–3028
-
Cheltsov I., Park J., “Birational Rigidity and Main Theorem”, Mem. Am. Math. Soc., 246:1167 (2017), 1+
-
Sławomir Dinew, Grzegorz Kapustka, Michał Kapustka, “Remarks on Mukai threefolds admitting $\mathbb C^*$ action”, Mosc. Math. J., 17:1 (2017), 15–33
-
Guedj V., Zeriahi A., “Degenerate Complex Monge-Ampere Equations”, Degenerate Complex Monge-Ampere Equations, Ems Tracts in Mathematics, 26, Eur. Math. Soc., 2017, 1–472
-
Smirnov E., “Singularities of Divisors on Flag Varieties Via Hwang'S Product Theorem”, Bull. Korean. Math. Soc., 54:5 (2017), 1773–1778
-
Jiang Ch., “K-Semistable Fano Manifolds With the Smallest Alpha Invariant”, Int. J. Math., 28:6 (2017), 1750044
-
Ahmadinezhad H., Cheltsov I., Schicho J., “On a Conjecture of Tian”, Math. Z., 288:1-2 (2018), 217–241
-
Paemurru E., “Del Pezzo Surfaces in Weighted Projective Spaces”, Proc. Edinb. Math. Soc., 61:2 (2018), 545–572
-
Keller J., Zheng K., “Construction of Constant Scalar Curvature Kahler Cone Metrics”, Proc. London Math. Soc., 117:3 (2018), 527–573
-
Pukhlikov A.V., “Canonical and Log Canonical Thresholds of Fano Complete Intersections”, Eur. J. Math., 4:1, 1, SI (2018), 381–398
-
Cheltsov I., Parka J., Shramov C., “Alpha-Invariants and Purely Log Terminal Blow-Ups”, Eur. J. Math., 4:3, 2, SI (2018), 845–858
-
Park J., Won J., “K-Stability of Smooth Del Pezzo Surfaces”, Math. Ann., 372:3-4 (2018), 1239–1276
-
Fujita K., Odaka Yu., “On the K-Stability of Fano Varieties and Anticanonical Divisors”, Tohoku Math. J., 70:4 (2018), 511–521
-
Cheltsov I.A., Rubinstein Ya.A., Zhang K., “Basis Log Canonical Thresholds, Local Intersection Estimates, and Asymptotically Log Del Pezzo Surfaces”, Sel. Math.-New Ser., 25:2 (2019), UNSP 34
-
Fujita K., “Openness Results For Uniform K-Stability”, Math. Ann., 373:3-4 (2019), 1529–1548
-
V. V. Przyjalkowski, I. A. Cheltsov, K. A. Shramov, “Fano threefolds with infinite automorphism groups”, Izv. Math., 83:4 (2019), 860–907
-
Stibitz Ch., Zhuang Z., “K-Stability of Birationally Superrigid Fano Varieties”, Compos. Math., 155:9 (2019), 1845–1852
-
Cheltsov I., Zhang K., “Delta Invariants of Smooth Cubic Surfaces”, Eur. J. Math., 5:3, SI (2019), 729–762
-
Fujita K., “K-Stability of Fano Manifolds With Not Small Alpha Invariants”, J. Inst. Math. Jussieu, 18:3 (2019), 519–530
-
Phong D.H., Song J., Sturm J., Wang X., “the Ricci Flow on the Sphere With Marked Points”, J. Differ. Geom., 114:1 (2020), 117–170
|
Number of views: |
This page: | 748 | Full text: | 214 | References: | 86 | First page: | 6 |
|