RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2010, Volume 65, Issue 1(391), Pages 189–190 (Mi umn9320)  

This article is cited in 7 scientific papers (total in 7 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field

M. V. Shamolin

Research Institute of Mechanics, M. V. Lomonosov Moscow State University

DOI: https://doi.org/10.4213/rm9320

Full text: PDF file (286 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2010, 65:1, 183–185

Bibliographic databases:

Document Type: Article
MSC: 70E15, 70E40
Presented: A. V. Mikhalev
Accepted: 09.08.2009

Citation: M. V. Shamolin, “A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field”, Uspekhi Mat. Nauk, 65:1(391) (2010), 189–190; Russian Math. Surveys, 65:1 (2010), 183–185

Citation in format AMSBIB
\Bibitem{Sha10}
\by M.~V.~Shamolin
\paper A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field
\jour Uspekhi Mat. Nauk
\yr 2010
\vol 65
\issue 1(391)
\pages 189--190
\mathnet{http://mi.mathnet.ru/umn9320}
\crossref{https://doi.org/10.4213/rm9320}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2655252}
\zmath{https://zbmath.org/?q=an:05759990}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010RuMaS..65..183S}
\elib{http://elibrary.ru/item.asp?id=20359403}
\transl
\jour Russian Math. Surveys
\yr 2010
\vol 65
\issue 1
\pages 183--185
\crossref{https://doi.org/10.1070/RM2010v065n01ABEH004670}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280053700008}
\elib{http://elibrary.ru/item.asp?id=15334680}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954780439}


Linking options:
  • http://mi.mathnet.ru/eng/umn9320
  • https://doi.org/10.4213/rm9320
  • http://mi.mathnet.ru/eng/umn/v65/i1/p189

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Shamolin M.V., “Complete list of first integrals in the problem on the motion of a 4D solid in a resisting medium under assumption of linear damping”, Dokl. Phys., 56:9 (2011), 498–501  crossref  mathscinet  mathscinet  adsnasa  isi  elib  elib
    2. M. V. Shamolin, “Complete list of first integrals for dynamic equations of motion of a solid body in a resisting medium with consideration of linear damping”, Moscow University Mechanics Bulletin, 67:4 (2012), 92–95  mathnet  crossref
    3. Shamolin M.V., “A new case of integrability in spatial dynamics of a rigid solid interacting with a medium under assumption of linear damping”, Dokl. Phys., 57:2 (2012), 78–80  crossref  mathscinet  adsnasa  isi  elib  elib
    4. M. V. Shamolin, “Integrable cases in the dynamics of a multi-dimensional rigid body in a nonconservative field in the presence of a tracking force”, J. Math. Sci., 214:6 (2016), 865–891  mathnet  crossref  mathscinet
    5. M. V. Shamolin, “Integrable variable dissipation systems on the tangent bundle of a multi-dimensional sphere and some applications”, J. Math. Sci., 230:2 (2018), 185–353  mathnet  crossref  elib
    6. Shamolin M.V., “Integrable nonconservative dynamical systems on the tangent bundle of the multidimensional sphere”, Differ. Equ., 52:6 (2016), 722–738  crossref  mathscinet  zmath  isi  elib  scopus
    7. M. V. Shamolin, “Integrable systems on the tangent bundle of a multi-dimensional sphere”, J. Math. Sci. (N. Y.), 234:4 (2018), 548–590  mathnet  crossref
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:401
    Full text:106
    References:59
    First page:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019