Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2010, Volume 65, Issue 1(391), Pages 189–190 (Mi umn9320)  

This article is cited in 11 scientific papers (total in 11 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field

M. V. Shamolin

Research Institute of Mechanics, M. V. Lomonosov Moscow State University

DOI: https://doi.org/10.4213/rm9320

Full text: PDF file (286 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2010, 65:1, 183–185

Bibliographic databases:

MSC: 70E15, 70E40
Presented: А. В. Михалёв
Accepted: 09.08.2009

Citation: M. V. Shamolin, “A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field”, Uspekhi Mat. Nauk, 65:1(391) (2010), 189–190; Russian Math. Surveys, 65:1 (2010), 183–185

Citation in format AMSBIB
\Bibitem{Sha10}
\by M.~V.~Shamolin
\paper A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field
\jour Uspekhi Mat. Nauk
\yr 2010
\vol 65
\issue 1(391)
\pages 189--190
\mathnet{http://mi.mathnet.ru/umn9320}
\crossref{https://doi.org/10.4213/rm9320}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2655252}
\zmath{https://zbmath.org/?q=an:05759990}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010RuMaS..65..183S}
\elib{https://elibrary.ru/item.asp?id=20359403}
\transl
\jour Russian Math. Surveys
\yr 2010
\vol 65
\issue 1
\pages 183--185
\crossref{https://doi.org/10.1070/RM2010v065n01ABEH004670}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280053700008}
\elib{https://elibrary.ru/item.asp?id=15334680}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954780439}


Linking options:
  • http://mi.mathnet.ru/eng/umn9320
  • https://doi.org/10.4213/rm9320
  • http://mi.mathnet.ru/eng/umn/v65/i1/p189

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Shamolin M.V., “Complete list of first integrals in the problem on the motion of a 4D solid in a resisting medium under assumption of linear damping”, Dokl. Phys., 56:9 (2011), 498–501  crossref  mathscinet  mathscinet  adsnasa  isi  elib  elib
    2. M. V. Shamolin, “Complete list of first integrals for dynamic equations of motion of a solid body in a resisting medium with consideration of linear damping”, Moscow University Mechanics Bulletin, 67:4 (2012), 92–95  mathnet  crossref
    3. Shamolin M.V., “A new case of integrability in spatial dynamics of a rigid solid interacting with a medium under assumption of linear damping”, Dokl. Phys., 57:2 (2012), 78–80  crossref  mathscinet  adsnasa  isi  elib  elib
    4. M. V. Shamolin, “Integrable cases in the dynamics of a multi-dimensional rigid body in a nonconservative field in the presence of a tracking force”, J. Math. Sci., 214:6 (2016), 865–891  mathnet  crossref  mathscinet
    5. M. V. Shamolin, “Integrable variable dissipation systems on the tangent bundle of a multi-dimensional sphere and some applications”, J. Math. Sci., 230:2 (2018), 185–353  mathnet  crossref  elib
    6. Shamolin M.V., “Integrable nonconservative dynamical systems on the tangent bundle of the multidimensional sphere”, Differ. Equ., 52:6 (2016), 722–738  crossref  mathscinet  zmath  isi  elib  scopus
    7. M. V. Shamolin, “Integrable systems on the tangent bundle of a multi-dimensional sphere”, J. Math. Sci. (N. Y.), 234:4 (2018), 548–590  mathnet  crossref
    8. M. V. Shamolin, “Integriruemye sistemy s dissipatsiei na kasatelnykh rassloeniyakh k sferam razmernostei $2$$3$”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 145, VINITI RAN, M., 2018, 86–94  mathnet  mathscinet
    9. M. V. Shamolin, “Topograficheskie sistemy Puankare i sistemy sravneniya malykh i vysokikh poryadkov”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 187, VINITI RAN, M., 2020, 50–67  mathnet  crossref
    10. M. V. Shamolin, “Sluchai integriruemosti uravnenii dvizheniya pyatimernogo tverdogo tela pri nalichii vnutrennego i vneshnego silovykh polei”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 187, VINITI RAN, M., 2020, 82–118  mathnet  crossref
    11. M. V. Shamolin, “Predelnye mnozhestva differentsialnykh uravnenii okolo singulyarnykh osobykh tochek”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 187, VINITI RAN, M., 2020, 119–128  mathnet  crossref
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:516
    Full text:173
    References:72
    First page:19

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021