RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2011, Volume 66, Issue 1(397), Pages 37–64 (Mi umn9405)  

This article is cited in 1 scientific paper (total in 1 paper)

Riemann–Hilbert problem for scalar Fuchsian equations and related problems

I. V. Vyugin

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

Abstract: This paper is devoted to the Riemann–Hilbert problem for scalar Fuchsian equations: the problem of constructing a scalar Fuchsian equation from a representation of the monodromy and a family of singular points. The results of Bolibrukh [5], van der Put and Singer [7], and the author [10], generalized to a unified theorem provided with a new proof, form the main part of the paper. Some possible applications of these results are also discussed.
Bibliography: 16 titles.

Keywords: Fuchsian equations and systems, Riemann–Hilbert problem, monodromy, bundle, connection.

DOI: https://doi.org/10.4213/rm9405

Full text: PDF file (668 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2011, 66:1, 35–62

Bibliographic databases:

UDC: 517.927.7
MSC: Primary 35Q15; Secondary 30E25, 31A25, 31B20, 34M50
Received: 08.12.2010

Citation: I. V. Vyugin, “Riemann–Hilbert problem for scalar Fuchsian equations and related problems”, Uspekhi Mat. Nauk, 66:1(397) (2011), 37–64; Russian Math. Surveys, 66:1 (2011), 35–62

Citation in format AMSBIB
\Bibitem{Vyu11}
\by I.~V.~Vyugin
\paper Riemann--Hilbert problem for scalar Fuchsian equations and related problems
\jour Uspekhi Mat. Nauk
\yr 2011
\vol 66
\issue 1(397)
\pages 37--64
\mathnet{http://mi.mathnet.ru/umn9405}
\crossref{https://doi.org/10.4213/rm9405}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2841685}
\zmath{https://zbmath.org/?q=an:1220.30050}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..66...35V}
\elib{https://elibrary.ru/item.asp?id=20423144}
\transl
\jour Russian Math. Surveys
\yr 2011
\vol 66
\issue 1
\pages 35--62
\crossref{https://doi.org/10.1070/RM2011v066n01ABEH004727}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000294605900002}
\elib{https://elibrary.ru/item.asp?id=17003982}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959543318}


Linking options:
  • http://mi.mathnet.ru/eng/umn9405
  • https://doi.org/10.4213/rm9405
  • http://mi.mathnet.ru/eng/umn/v66/i1/p37

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. G. Kozhobekov, D. A. Tursunov, “Asimptotika resheniya kraevoi zadachi, kogda predelnoe uravnenie imeet neregulyarnuyu osobuyu tochku”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:3 (2019), 332–340  mathnet  crossref
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:633
    Full text:210
    References:74
    First page:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020