RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2011, Volume 66, Issue 2(398), Pages 237–238 (Mi umn9425)  

This article is cited in 4 scientific papers (total in 4 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Weighted Radon transforms for which Chang's approximate inversion formula is exact

R. G. Novikovab

a International Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS
b CNRS, Centre de Math\'ematiques Appliqu\'ees, Ecole Polytechnique, France

DOI: https://doi.org/10.4213/rm9425

Full text: PDF file (321 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2011, 66:2, 442–443

Bibliographic databases:

Document Type: Article
MSC: 44A12
Presented: S. P. Novikov
Accepted: 01.02.2011

Citation: R. G. Novikov, “Weighted Radon transforms for which Chang's approximate inversion formula is exact”, Uspekhi Mat. Nauk, 66:2(398) (2011), 237–238; Russian Math. Surveys, 66:2 (2011), 442–443

Citation in format AMSBIB
\Bibitem{Nov11}
\by R.~G.~Novikov
\paper Weighted Radon transforms for which Chang's approximate inversion formula is exact
\jour Uspekhi Mat. Nauk
\yr 2011
\vol 66
\issue 2(398)
\pages 237--238
\mathnet{http://mi.mathnet.ru/umn9425}
\crossref{https://doi.org/10.4213/rm9425}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2847796}
\zmath{https://zbmath.org/?q=an:1221.44006}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..66..442N}
\elib{http://elibrary.ru/item.asp?id=20423198}
\transl
\jour Russian Math. Surveys
\yr 2011
\vol 66
\issue 2
\pages 442--443
\crossref{https://doi.org/10.1070/RM2011v066n02ABEH004747}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000294606300009}
\elib{http://elibrary.ru/item.asp?id=16988353}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79960196951}


Linking options:
  • http://mi.mathnet.ru/eng/umn9425
  • https://doi.org/10.4213/rm9425
  • http://mi.mathnet.ru/eng/umn/v66/i2/p237

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Related presentations:

    This publication is cited in the following articles:
    1. Guillement J.-P., Novikov R.G., “Optimized Analytic Reconstruction for Spect”, J. Inverse Ill-Posed Probl., 20:4 (2012), 489–500  crossref  mathscinet  zmath  isi  elib
    2. Miqueles E.X., De Pierro A.R., “On the Iterative Inversion of Generalized Attenuated Radon Transforms”, J. Inverse Ill-Posed Probl., 21:5 (2013), 695–712  crossref  mathscinet  zmath  isi  elib
    3. Guillement J.-P., Novikov R.G., “Inversion of Weighted Radon Transforms Via Finite Fourier Series Weight Approximations”, Inverse Probl. Sci. Eng., 22:5 (2014), 787–802  crossref  mathscinet  zmath  isi  elib
    4. R. G. Novikov, “Weighted Radon transforms and first order differential systems on the plane”, Mosc. Math. J., 14:4 (2014), 807–823  mathnet  mathscinet
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:429
    Full text:98
    References:42
    First page:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019