|
This article is cited in 41 scientific papers (total in 42 papers)
Hermite–Padé approximations and multiple orthogonal polynomial ensembles
A. I. Aptekareva, A. Kuijlaarsb a M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences, Moscow
b Katholieke Universiteit Leuven, Belgium
Abstract:
This paper is concerned with Hermite–Padé rational approximants of analytic functions and their connection with multiple orthogonal polynomial ensembles of random matrices. Results on the analytic theory of such approximants are discussed, namely, convergence and the distribution of the poles of the rational approximants, and a survey is given of results on the distribution of the eigenvalues of the corresponding random matrices and on various regimes of such distributions. An important notion used to describe and to prove these kinds of results is the equilibrium of vector potentials with interaction matrices. This notion was introduced by A. A. Gonchar and E. A. Rakhmanov in 1981.
Bibliography: 91 titles.
Keywords:
Hermite–Padé approximants, multiple orthogonal polynomials, weak and strong asymptotics, extremal equilibrium problems for a system of measures, matrix Riemann–Hilbert problem, Christoffel–Darboux formula, matrix model with an external source, non-intersecting paths, two-matrix model.
DOI:
https://doi.org/10.4213/rm9454
Full text:
PDF file (1539 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 2011, 66:6, 1133–1199
Bibliographic databases:
UDC:
517.53
MSC: Primary 41A21, 42C05, 60B20; Secondary 31A15, 60G17, 60G55 Received: 15.09.2011
Citation:
A. I. Aptekarev, A. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Uspekhi Mat. Nauk, 66:6(402) (2011), 123–190; Russian Math. Surveys, 66:6 (2011), 1133–1199
Citation in format AMSBIB
\Bibitem{AptKui11}
\by A.~I.~Aptekarev, A.~Kuijlaars
\paper Hermite--Pad\'e approximations and multiple orthogonal polynomial ensembles
\jour Uspekhi Mat. Nauk
\yr 2011
\vol 66
\issue 6(402)
\pages 123--190
\mathnet{http://mi.mathnet.ru/umn9454}
\crossref{https://doi.org/10.4213/rm9454}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2963452}
\zmath{https://zbmath.org/?q=an:1243.41004}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..66.1133A}
\elib{http://elibrary.ru/item.asp?id=20423334}
\transl
\jour Russian Math. Surveys
\yr 2011
\vol 66
\issue 6
\pages 1133--1199
\crossref{https://doi.org/10.1070/RM2011v066n06ABEH004771}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000301121000003}
\elib{http://elibrary.ru/item.asp?id=18036036}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84859019002}
Linking options:
http://mi.mathnet.ru/eng/umn9454https://doi.org/10.4213/rm9454 http://mi.mathnet.ru/eng/umn/v66/i6/p123
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. V. Komlov, S. P. Suetin, “Widom's formula for the leading coefficient of a polynomial which is orthonormal with respect to a varying weight”, Russian Math. Surveys, 67:1 (2012), 183–185
-
M. A. Lapik, “Equilibrium measure for the vector logarithmic potential problem with an external field and the Nikishin interaction matrix”, Russian Math. Surveys, 67:3 (2012), 579–581
-
E. A. Rakhmanov, S. P. Suetin, “Asymptotic behaviour of the Hermite–Padé polynomials of the 1st kind for a pair of functions forming a Nikishin system”, Russian Math. Surveys, 67:5 (2012), 954–956
-
A. V. Komlov, S. P. Suetin, “An asymptotic formula for polynomials orthonormal with respect to a varying weight”, Trans. Moscow Math. Soc., 73 (2012), 139–159
-
A. P. Starovoitov, G. N. Kazimirov, A. V. Astafeva, “Asimptotika approksimatsii Ermita-Pade dlya dvukh eksponent”, Vesnik Vitsebskaga dzyarzhainaga universiteta, 6:72 (2012), 23–27
-
A. Hardy, A. B. J. Kuijlaars, “Weakly admissible vector equilibrium problems”, J. Approx. Theory, 164:6 (2012), 854–868
-
S. Delvaux, A. López, G. López Lagomasino, “A family of Nikishin systems with periodic recurrence coefficients”, Sb. Math., 204:1 (2013), 43–74
-
V. I. Buslaev, “Convergence of multipoint Padé approximants of piecewise analytic functions”, Sb. Math., 204:2 (2013), 190–222
-
A. P. Starovoitov, “Approksimatsii Ermita–Pade dlya sistemy funktsii Mittag-Lefflera”, PFMT, 2013, no. 1(14), 81–87
-
E. A. Rakhmanov, S. P. Suetin, “The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390
-
A. Hardy, A. B. J. Kuijlaars, “Weakly admissible vector equilibrium problems”, J. Approx. Theory, 170 (2013), 44–58
-
R. K. Kovacheva, S. P. Suetin, “Distribution of zeros of the Hermite–Padé polynomials for a system of three functions, and the Nuttall condenser”, Proc. Steklov Inst. Math., 284 (2014), 168–191
-
A. Aptekarev, J. Arvesu, “Asymptotics for multiple Meixner polynomials”, J. Math. Anal. Appl., 411:2 (2014), 485–505
-
A. P. Starovoitov, “On asymptotic form of the Hermite–Pade approximations for a system of Mittag-Leffler functions”, Russian Math. (Iz. VUZ), 58:9 (2014), 49–56
-
A. I. Aptekarev, D. N. Tulyakov, “The leading term of the Plancherel-Rotach asymptotic formula for solutions of recurrence relations”, Sb. Math., 205:12 (2014), 1696–1719
-
M. A. Lapik, “Formula Buyarova–Rakhmanova dlya vneshnego polya v vektornoi zadache ravnovesiya logarifmicheskogo potentsiala”, Preprinty IPM im. M. V. Keldysha, 2014, 082, 15 pp.
-
A. I. Aptekarev, M. Derevyagin, W. Van Assche, “On 2D discrete Schrödinger operators associated with multiple orthogonal polynomials”, J. Phys. A, 48:6 (2015), 065201, 16 pp.
-
M. A. Lapik, “Families of vector measures which are equilibrium measures in an external field”, Sb. Math., 206:2 (2015), 211–224
-
S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951
-
V. M. Buchstaber, V. N. Dubinin, V. A. Kaliaguine, B. S. Kashin, V. N. Sorokin, S. P. Suetin, D. N. Tulyakov, B. N. Chetverushkin, E. M. Chirka, A. A. Shkalikov, “Alexander Ivanovich Aptekarev (on his 60th birthday)”, Russian Math. Surveys, 70:5 (2015), 965–973
-
Aptekarev A.I., Lopez Lagomasino G., Martinez-Finkelshtein A., “Strong Asymptotics For the Pollaczek Multiple Orthogonal Polynomials”, 92, no. 3, 2015, 709–713
-
A. V. Astafieva, A. P. Starovoitov, “Hermite-Padé approximation of exponential functions”, Sb. Math., 207:6 (2016), 769–791
-
Emil Horozov, “Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials”, SIGMA, 12 (2016), 050, 14 pp.
-
Arno B. J. Kuijlaars, “A Vector Equilibrium Problem for Muttalib–Borodin Biorthogonal Ensembles”, SIGMA, 12 (2016), 065, 15 pp.
-
V. G. Lysov, D. N. Tulyakov, “O vektornoi teoretiko-potentsialnoi zadache s matritsei Anzhelesko”, Preprinty IPM im. M. V. Keldysha, 2016, 110, 36 pp.
-
Aptekarev A.I., Derevyagin M., Van Assche W., “Discrete integrable systems generated by Hermite-Padé approximants”, Nonlinearity, 29:5 (2016), 1487–1506
-
Martinez-Finkelshtein A., Rakhmanov E.A., Suetin S.P., “Asymptotics of Type I Hermite–Padé Polynomials for Semiclassical Functions”, Modern Trends in Constructive Function Theory, Contemporary Mathematics, 661, eds. Hardin D., Lubinsky D., Simanek B., Amer Mathematical Soc, 2016, 199+
-
Martinez-Finkelshtein A., Rakhmanov E.A., “Do Orthogonal Polynomials Dream of Symmetric Curves?”, Found. Comput. Math., 16:6 (2016), 1697–1736
-
Martinez-Finkelshtein A. Silva G.L.F., “Critical measures for vector energy: Global structure of trajectories of quadratic differentials”, Adv. Math., 302 (2016), 1137–1232
-
M. V. Sidortsov, N. A. Starovoitova, A. P. Starovoitov, “Ob asimptotike approksimatsii Ermita–Pade vtorogo roda dlya eksponentsialnykh funktsii s kompleksnymi mnozhitelyami v pokazatelyakh eksponent”, PFMT, 2017, no. 1(30), 73–77
-
A. I. Aptekarev, G. López Lagomasino, A. Martínez-Finkelshtein, “On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials”, Russian Math. Surveys, 72:3 (2017), 389–449
-
M. V. Sidortsov, A. A. Drapeza, A. P. Starovoitov, “Approksimatsii Ermita–Pade vyrozhdennykh gipergeometricheskikh funktsii”, PFMT, 2017, no. 2(31), 69–74
-
A. P. Starovoitov, “Asymptotics of Diagonal Hermite–Padé Polynomials for the Collection of Exponential Functions”, Math. Notes, 102:2 (2017), 277–288
-
E. D. Belega, D. N. Tulyakov, “High-dimensional oscillators and Laguerre polynomials”, Russian Math. Surveys, 72:5 (2017), 965–967
-
V. G. Lysov, “Silnaya asimptotika approksimatsii Ermita–Pade dlya sistemy Nikishina s vesami Yakobi”, Preprinty IPM im. M. V. Keldysha, 2017, 085, 35 pp.
-
M. A. Lapik, D. N. Tulyakov, “Raspredelenie nulei mnogochlenov Ermita vblizi nulya i gaussovskie unitarnye ansambli”, Preprinty IPM im. M. V. Keldysha, 2017, 129, 11 pp.
-
Horozov E., “Vector Orthogonal Polynomials With Bochner'S Property”, Constr. Approx., 48:2 (2018), 201–234
-
M. V. Sidortsov, A. A. Drapeza, A. P. Starovoitov, “Skorost skhodimosti kvadratichnykh approksimatsii Ermita–Pade vyrozhdennykh gipergeometricheskikh funktsii”, PFMT, 2018, no. 1(34), 71–78
-
Emil Horozov, “$d$-Orthogonal Analogs of Classical Orthogonal Polynomials”, SIGMA, 14 (2018), 063, 27 pp.
-
M. A. Lapik, D. N. Tulyakov, “On expanding neighborhoods of local universality of Gaussian unitary ensembles”, Proc. Steklov Inst. Math., 301 (2018), 170–179
-
A. P. Starovoitov, “Hermite–Padé approximants of the Mittag-Leffler functions”, Proc. Steklov Inst. Math., 301 (2018), 228–244
-
Martinez-Finkelshtein A. Silva G.L.F., “Critical Measures For Vector Energy: Asymptotics of Non-Diagonal Multiple Orthogonal Polynomials For a Cubic Weight”, Adv. Math., 349 (2019), 246–315
|
Number of views: |
This page: | 702 | Full text: | 172 | References: | 74 | First page: | 29 |
|