RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2012, Volume 67, Issue 1(403), Pages 181–182 (Mi umn9456)  

This article is cited in 9 scientific papers (total in 9 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

A system on a torus modelling the dynamics of a Josephson junction

V. M. Buchstabera, O. V. Karpovab, S. I. Tertychnyib

a Steklov Mathematical Institute, Russian Academy of Sciences
b VNIIFTRI—National Metrological Institute of Russia

DOI: https://doi.org/10.4213/rm9456

Full text: PDF file (344 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2012, 67:1, 178–180

Bibliographic databases:

Document Type: Article
MSC: 34A34
Presented: S. P. Novikov
Accepted: 11.01.2012

Citation: V. M. Buchstaber, O. V. Karpov, S. I. Tertychnyi, “A system on a torus modelling the dynamics of a Josephson junction”, Uspekhi Mat. Nauk, 67:1(403) (2012), 181–182; Russian Math. Surveys, 67:1 (2012), 178–180

Citation in format AMSBIB
\Bibitem{BucKarTer12}
\by V.~M.~Buchstaber, O.~V.~Karpov, S.~I.~Tertychnyi
\paper A system on a torus modelling the dynamics of a Josephson junction
\jour Uspekhi Mat. Nauk
\yr 2012
\vol 67
\issue 1(403)
\pages 181--182
\mathnet{http://mi.mathnet.ru/umn9456}
\crossref{https://doi.org/10.4213/rm9456}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2961472}
\zmath{https://zbmath.org/?q=an:1248.34062}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2012RuMaS..67..178B}
\elib{http://elibrary.ru/item.asp?id=20423442}
\transl
\jour Russian Math. Surveys
\yr 2012
\vol 67
\issue 1
\pages 178--180
\crossref{https://doi.org/10.1070/RM2012v067n01ABEH004781}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000303447100005}
\elib{http://elibrary.ru/item.asp?id=17985117}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860874450}


Linking options:
  • http://mi.mathnet.ru/eng/umn9456
  • https://doi.org/10.4213/rm9456
  • http://mi.mathnet.ru/eng/umn/v67/i1/p181

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Buchstaber, S. I. Tertychnyi, “Explicit solution family for the equation of the resistively shunted Josephson junction model”, Theoret. and Math. Phys., 176:2 (2013), 965–986  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. V. M. Buchstaber, S. I. Tertychnyi, “Dynamical systems on a torus with identity Poincaré map which are associated with the Josephson effect”, Russian Math. Surveys, 69:2 (2014), 383–385  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. A. Klimenko, O. Romaskevich, “Asymptotic properties of Arnold tongues and Josephson effect”, Mosc. Math. J., 14:2 (2014), 367–384  mathnet  mathscinet
    4. A. A. Glutsyuk, V. A. Kleptsyn, D. A. Filimonov, I. V. Shchurov, “On the Adjacency Quantization in an Equation Modeling the Josephson Effect”, Funct. Anal. Appl., 48:4 (2014), 272–285  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. V. M. Buchstaber, S. I. Tertychnyi, “Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction”, Theoret. and Math. Phys., 182:3 (2015), 329–355  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    6. V. M. Buchstaber, S. I. Tertychnyi, “Automorphisms of the solution spaces of special double-confluent Heun equations”, Funct. Anal. Appl., 50:3 (2016), 176–192  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    7. Buchstaber V.M., Glutsyuk A.A., “On determinants of modified Bessel functions and entire solutions of double confluent Heun equations”, Nonlinearity, 29:12 (2016), 3857–3870  crossref  mathscinet  zmath  isi  elib  scopus
    8. V. M. Buchstaber, A. A. Glutsyuk, “On monodromy eigenfunctions of Heun equations and boundaries of phase-lock areas in a model of overdamped Josephson effect”, Proc. Steklov Inst. Math., 297 (2017), 50–89  mathnet  crossref  crossref  mathscinet  isi  elib
    9. Jacimovic V., Crnkic A., “Modelling Mean Fields in Networks of Coupled Oscillators”, J. Geom. Phys., 124 (2018), 241–248  crossref  mathscinet  zmath  isi  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:475
    Full text:113
    References:39
    First page:56

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019