|
This article is cited in 76 scientific papers (total in 76 papers)
The Monge–Kantorovich problem: achievements, connections, and perspectives
V. I. Bogachevab, A. V. Kolesnikovc a M. V. Lomonosov Moscow State University
b St. Tikhon's Orthodox University
c Higher School of Economics
Abstract:
This article gives a survey of recent research related to the Monge–Kantorovich problem. Principle results are presented on the existence of solutions and their properties both in the Monge optimal transportation problem and the Kantorovich optimal plan problem, along with results on the connections between both problems and the cases when they are equivalent. Diverse applications of these problems in non-linear analysis, probability theory, and differential geometry are discussed.
Bibliography: 196 titles.
Keywords:
Monge problem, Kantorovich problem, optimal transportation, transport inequality, Kantorovich–Rubinshtein metric.
DOI:
https://doi.org/10.4213/rm9490
Full text:
PDF file (1370 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 2012, 67:5, 785–890
Bibliographic databases:
UDC:
519.2+517.9
MSC: 28C20, 35J96, 49Q20, 60B05 Received: 20.06.2012
Citation:
V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Uspekhi Mat. Nauk, 67:5(407) (2012), 3–110; Russian Math. Surveys, 67:5 (2012), 785–890
Citation in format AMSBIB
\Bibitem{BogKol12}
\by V.~I.~Bogachev, A.~V.~Kolesnikov
\paper The Monge--Kantorovich problem: achievements, connections, and perspectives
\jour Uspekhi Mat. Nauk
\yr 2012
\vol 67
\issue 5(407)
\pages 3--110
\mathnet{http://mi.mathnet.ru/umn9490}
\crossref{https://doi.org/10.4213/rm9490}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3058744}
\zmath{https://zbmath.org/?q=an:06148569}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2012RuMaS..67..785B}
\elib{https://elibrary.ru/item.asp?id=20423462}
\transl
\jour Russian Math. Surveys
\yr 2012
\vol 67
\issue 5
\pages 785--890
\crossref{https://doi.org/10.1070/RM2012v067n05ABEH004808}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000314222000001}
\elib{https://elibrary.ru/item.asp?id=20485666}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84872294543}
Linking options:
http://mi.mathnet.ru/eng/umn9490https://doi.org/10.4213/rm9490 http://mi.mathnet.ru/eng/umn/v67/i5/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Cheridito P., Kiiski M., Proemel D.J., Soner H.M., “Martingale Optimal Transport Duality”, Math. Ann.
-
A. M. Vershik, “Long history of the Monge-Kantorovich transportation problem”, Math. Intelligencer, 35:4 (2013), 1–9
-
A. V. Kolesnikov, O. V. Kudryavtseva, T. Nagapetyan, “Remarks on Afriat's theorem and the Monge-Kantorovich problem”, J. Math. Econom., 49:6 (2013), 501–505
-
J. Manfred, M. Lippi, A. Passerini, P. Frasconi, “Type Extension Trees for feature construction and learning in relational domains”, Artificial Intelligence, 204 (2013), 30–55
-
G. A. Vasiliev, V. M. Khametov, E. A. Shelemekh, “Conditions for the Discreteness of Extremal Probability Measures (the Finite-Dimensional Case)”, Math. Notes, 94:6 (2013), 963–967
-
A. M. Vershik, “Two ways to define compatible metrics on the simplex of measures”, J. Math. Sci. (N. Y.), 196:2 (2014), 138–143
-
A. V. Kolesnikov, S. Yu. Tikhonov, “Regularity of the Monge–Ampère equation in Besov's spaces”, Calc. Var., 49:3-4 (2014), 1187–1197
-
A. V. Kolesnikov, M. Röckner, “On continuity equations in infinite dimensions with non-Gaussian reference measure”, J. Funct. Anal., 266:7 (2014), 4490–4537
-
O. Butkovsky, “Subgeometric rates of convergence of Markov processes in the Wasserstein metric”, Ann. Appl. Probab., 24:2 (2014), 526–552
-
S. Caracciolo, C. Lucibello, G. Parisi, G. Sicuro, “Scaling hypothesis for the Euclidean bipartite matching problem”, Phys. Rev. E, 90:1 (2014), 012118
-
D. B. Bukin, “On the Monge and Kantorovich problems for distributions of diffusion processes”, Math. Notes, 96:5-6 (2014), 864–870
-
V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker-Planck-Kolmogorov equations”, Math. Notes, 96:5-6 (2014), 855–863
-
F. Cacciafesta, A.-S. de Suzzoni, “Continuity of the flow of KdV with regard to the Wasserstein metrics and application to an invariant measure”, J. Differential Equations, 259:3 (2015), 1024–1067
-
V. I. Bogachev, A. V. Shaposhnikov, “Lower bounds for the Kantorovich distance”, Dokl. Math., 91:1 (2015), 91–93
-
O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “Uniqueness of probability solutions to nonlinear Fokker-Planck-Kolmogorov equation”, Dokl. Math., 91:2 (2015), 142–146
-
D. Zaev, “On the Monge–Kantorovich Problem with Additional Linear Constraints”, Math. Notes, 98:5 (2015), 725–741
-
D. A. Zaev, “On ergodic decompositions related to the Kantorovich problem”, J. Math. Sci. (N. Y.), 216:1 (2016), 65–83
-
O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “On uniqueness of solutions to nonlinear Fokker-Planck-Kolmogorov equations”, Nonlinear Anal., 128 (2015), 199–226
-
V. I. Bogachev, A. N. Kalinin, “A continuous cost function for which the minima in the Monge and Kantorovich problems are not equal”, Dokl. Math., 92:1 (2015), 452–455
-
V. I. Bogachev, F.-Y. Wang, A. V. Shaposhnikov, “Estimates of the Kantorovich Norm on Manifolds”, Dokl. Math., 92:1 (2015), 494–499
-
Wu Zong-min, Tian Zheng, “Distribution function estimates by Wasserstein metric and Bernstein approximation for $C^{-1}$ functions”, Appl. Math. J. Chinese Univ. Ser. B, 30:2 (2015), 141–150
-
Alexander V. Kolesnikov, Danila A. Zaev, “Exchangeable optimal transportation and log-concavity”, Theory Stoch. Process., 20(36):2 (2015), 54–62
-
V. I. Bogachev, “Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures”, Russian Math. Surveys, 71:4 (2016), 703–749
-
D. B. Bukin, “On the Kantorovich Problem for Nonlinear Images of the Wiener Measure”, Math. Notes, 100:5 (2016), 660–665
-
V. I. Bogachev, A. F. Miftakhov, “On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes”, Theory Stoch. Process., 21(37):1 (2016), 1–11
-
S. G. Bobkov, “Proximity of probability distributions in terms of Fourier–Stieltjes transforms”, Russian Math. Surveys, 71:6 (2016), 1021–1079
-
V. I. Bogachev, M. Rëckner, S. V. Shaposhnikov, “Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations”, J. Funct. Anal., 271:5 (2016), 1262–1300
-
A. V. Kolesnikov, E. Milman, “Riemannian metrics on convex sets with applications to Poincaré and log-Sobolev inequalities”, Calc. Var. Partial Differential Equations, 55:4 (2016), 77, 36 pp.
-
V. I. Bogachev, F.-Y. Wang, A. V. Shaposhnikov, “On inequalities relating the Sobolev and Kantorovich norms”, Dokl. Math., 93:3 (2016), 256–258
-
V. I. Bogachev, M. Rëckner, S. V. Shaposhnikov, “Estimates of distances between transition probabilities of diffusions”, Dokl. Math., 93:2 (2016), 135–139
-
A. Winter, “Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints”, Comm. Math. Phys., 347:1 (2016), 291–313
-
I. I. Malofeev, “Measurable dependence of conditional measures on a parameter”, Dokl. Math., 94:2 (2016), 493–497
-
A. V. Kolesnikov, E. Milman, “Riemannian metrics in $\mathbb R^n$ and Sobolev-type inequalities”, Dokl. Math., 94:2 (2016), 510–513
-
Alexander V. Kolesnikov, Nikolay Lysenko, “Remarks on mass transportation minimizing expectation of a minimum of affine functions”, Theory Stoch. Process., 21(37):2 (2016), 22–28
-
G. V. Riabov, “A representation for the Kantorovich–Rubinstein distance defined by the Cameron–Martin norm of a Gaussian measure on a Banach space”, Theory Stoch. Process., 21(37):2 (2016), 84–90
-
I. Oliver, Y. Miche, “On the development of a metric for quality of information content over anonymised data-sets”, Proceedings 2016 10Th International Conference on the Quality of Information and Communications Technology (Quatic), IEEE, 2016, 185–190
-
V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations”, Theory Probab. Appl., 62:1 (2018), 12–34
-
B. Klartag, A. V. Kolesnikov, “Remarks on curvature in the transportation metric”, Anal. Math., 43:1 (2017), 67–88
-
J. Xie, G. Dai, F. Zhu, Y. Fang, “Learning barycentric representations of 3D shapes for sketch-based 3D shape retrieval”, 30Th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2017, 3615–3623
-
J. M. Nichols, J. A. Spendelow, J. D. Nichols, “Using optimal transport theory to estimate transition probabilities in metapopulation dynamics”, Ecol. Model., 359 (2017), 311–319
-
O. A. Manita, “Estimates for transportation costs along solutions to Fokker-Planck-Kolmogorov equations with dissipative drifts”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28:3 (2017), 601–618
-
V. I. Bogachev, E. D. Kosov, S. N. Popova, “On Gaussian Nikolskii-Besov classes”, Dokl. Math., 96:2 (2017), 498–502
-
O. Butkovsky, M. Scheutzow, “Invariant measures for stochastic functional differential equations”, Electron. J. Probab., 22 (2017), 98, 23 pp.
-
V. I. Bogachev, A. N. Doledenok, S. V. Shaposhnikov, “Weighted Zolotarev metrics and the Kantorovich metric”, Dokl. Math., 95:2 (2017), 113–117
-
G. Sicuro, “The Euclidean matching problem”, Doctoral thesis accepted by the University of Pisa, Italy, Springer Theses, Springer, Cham, 2017, 1–4
-
G. Sulyok, S. Sponar, “Heisenberg's error-disturbance uncertainty relation: Experimental study of competing approaches”, Phys. Rev. A, 96:2 (2017), 022137
-
Nikolay Lysenko, “Maximization of functionals depending on the terminal value and the running maximum of a martingale: a mass transport approach”, Theory Stoch. Process., 22(38):1 (2017), 30–40
-
Georgii A. Alekseev, Ekaterina V. Yurova, “On Gaussian conditional measures depending on a parameter”, Theory Stoch. Process., 22(38):2 (2017), 1–7
-
Alexander V. Kolesnikov, Egor D. Kosov, “Moment measures and stability for Gaussian inequalities”, Theory Stoch. Process., 22(38):2 (2017), 47–61
-
V. I. Bogachev, A. N. Kalinin, S. N. Popova, “On the equality of values in the Monge and Kantorovich problems”, J. Math. Sci. (N. Y.), 238:4 (2019), 377–389
-
S. G. Bobkov, “Berry-Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances”, Probab. Theory Relat. Field, 170:1-2 (2018), 229–262
-
R. S. MacKay, “Management of complex dynamical systems”, Nonlinearity, 31:2 (2018), R52–R65
-
H. Brezis, “Remarks on the Monge-Kantorovich problem in the discrete setting”, C. R. Math. Acad. Sci. Paris, 356:2 (2018), 207–213
-
A. N. Doledenok, “On a Kantorovich Problem with a Density Constraint”, Math. Notes, 104:1 (2018), 39–47
-
V. I. Bogachev, “Ornstein–Uhlenbeck operators and semigroups”, Russian Math. Surveys, 73:2 (2018), 191–260
-
A. A. Mingazov, D. A. Bykov, L. L. Doskolovich, N. L. Kazanskii, “Variatsionnaya interpretatsiya zadachi rascheta funktsii eikonala iz usloviya formirovaniya zadannogo raspredeleniya osveschennosti”, Kompyuternaya optika, 42:4 (2018), 568–573
-
N. L. Kazanskii, S. I. Kharitonov, I. N. Kozlova, M. A. Moiseev, “Svyaz fazovoi problemy v optike, fokusirovki izlucheniya i zadachi Monzha–Kantorovicha”, Kompyuternaya optika, 42:4 (2018), 574–587
-
Carlini E., Silva F.J., “On the Discretization of Some Nonlinear Fokker-Planck-Kolmogorov Equations and Applications”, SIAM J. Numer. Anal., 56:4 (2018), 2148–2177
-
V. V. Kozlov, “The Monge problem of “piles and holes” on the torus and the problem of small denominators”, Siberian Math. J., 59:6 (2018), 1090–1093
-
Bogachev V.I. Shaposhnikov A.V. Shaposhnikov S.V., “Estimates For Solutions to Fokker-Planck-Kolmogorov Equations With Integrable Drifts”, Dokl. Math., 98:3 (2018), 559–563
-
Kazanskiy N.L., Kharitonov S.I., Kozlova I.N., Moiseev M.A., “The Connection Between the Phase Problem in Optics, Focusing of Radiation, and the Monge-Kantorovich Problem”, Comput. Opt., 42:4 (2018), 574–587
-
Dmitry V. Bakin, Elena P. Krugova, “Transportation costs for optimal and triangular transformations of Gaussian measures”, Theory Stoch. Process., 23(39):2 (2018), 21–32
-
Zhao P., Zhou Zh.-H., “Label Distribution Learning By Optimal Transport”, Thirty-Second Aaai Conference on Artificial Intelligence / Thirtieth Innovative Applications of Artificial Intelligence Conference / Eighth Aaai Symposium on Educational Advances in Artificial Intelligence, Assoc Advancement Artificial Intelligence, 2018, 4506–4513
-
Bronevich A.G., Rozenberg I.N., “the Kantorovich Problem and Wasserstein Metric in the Theory of Belief Functions”, Belief Functions: Theory and Applications, Belief 2018, Lecture Notes in Artificial Intelligence, 11069, eds. Destercke S., Denoeux T., Cuzzolin F., Martin A., Springer International Publishing Ag, 2018, 31–38
-
Bogachev V.I. Miftakhov A.F. Shaposhnikov S.V., “Differential Properties of Semigroups and Estimates of Distances Between Stationary Distributions of Diffusions”, Dokl. Math., 99:2 (2019), 175–180
-
Cioletti L., Silva E., Stadlbauer M., “Thermodynamic Formalism For Topological Markov Chains on Standard Borel Spaces”, Discret. Contin. Dyn. Syst., 39:11 (2019), 6277–6298
-
Gladkov N.A., Kolesnikov V A., Zimin A.P., “on Multistochastic Monge-Kantorovich Problem, Bitwise Operations, and Fractals”, Calc. Var. Partial Differ. Equ., 58:5 (2019), 173
-
Bogachev V.I., Malofeev I.I., “on the Kantorovich Problem With a Parameter”, Dokl. Math., 100:1 (2019), 349–353
-
Cobzas S., Miculescu R., Nicolae A., “Lipschitz Functions Preface”: Cobzas, S Miculescu, R Nicolae, A, Lipschitz Functions, Lect. Notes Math., Lecture Notes in Mathematics, 2241, Springer International Publishing Ag, 2019, V+
-
Li Ch., Ouyang J., Li X., “Classifying Extremely Short Texts By Exploiting Semantic Centroids in Word Mover'S Distance Space”, Web Conference 2019: Proceedings of the World Wide Web Conference (Www 2019), Assoc Computing Machinery, 2019, 939–949
-
Bogachev V.I., Shaposhnikov A.V., Shaposhnikov S.V., “Log-Sobolev-Type Inequalities For Solutions to Stationary Fokker-Planck-Kolmogorov Equations”, Calc. Var. Partial Differ. Equ., 58:5 (2019), 176
-
Dello Schiavo L., “Characteristic Functionals of Dirichlet Measures”, Electron. J. Probab., 24 (2019), 115
-
Bogachev I V., “Distributions of Polynomials in Many Variables and Nikolskii-Besov Spaces”, Real Anal. Exch., 44:1 (2019), 49–64
-
Vladimir I. Bogachev, Egor D. Kosov, Svetlana N. Popova, “A new approach to Nikolskii–Besov classes”, Mosc. Math. J., 19:4 (2019), 619–654
-
Bogachev V.I., Malofeev I.I., “Kantorovich Problems and Conditional Measures Depending on a Parameter”, J. Math. Anal. Appl., 486:10 (2020), 123883
-
Alexander V. Kolesnikov, “Mass transportation functionals on the sphere with applications to the logarithmic Minkowski problem”, Mosc. Math. J., 20:1 (2020), 67–91
|
Number of views: |
This page: | 2779 | Full text: | 1034 | References: | 139 | First page: | 136 |
|