|
This article is cited in 3 scientific papers (total in 3 papers)
In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society
On spectral components of the Schrödinger operator with a complex potential
S. A. Stepinab a Institute of Mathematics, University of Bialystok, Poland
b Moscow State University
DOI:
https://doi.org/10.4213/rm9502
Full text:
PDF file (342 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 2013, 68:1, 186–188
Bibliographic databases:
Document Type:
Article
MSC: 34L15, 34L40 Presented: R. A. Minlos Accepted: 01.11.2012
Citation:
S. A. Stepin, “On spectral components of the Schrödinger operator with a complex potential”, Uspekhi Mat. Nauk, 68:1(409) (2013), 199–200; Russian Math. Surveys, 68:1 (2013), 186–188
Citation in format AMSBIB
\Bibitem{Ste13}
\by S.~A.~Stepin
\paper On spectral components of the Schr\"odinger operator with a~complex potential
\jour Uspekhi Mat. Nauk
\yr 2013
\vol 68
\issue 1(409)
\pages 199--200
\mathnet{http://mi.mathnet.ru/umn9502}
\crossref{https://doi.org/10.4213/rm9502}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3088083}
\zmath{https://zbmath.org/?q=an:06170783}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68..186S}
\elib{http://elibrary.ru/item.asp?id=20423484}
\transl
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 1
\pages 186--188
\crossref{https://doi.org/10.1070/RM2013v068n01ABEH004826}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000318537500006}
\elib{http://elibrary.ru/item.asp?id=20821893}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877018274}
Linking options:
http://mi.mathnet.ru/eng/umn9502https://doi.org/10.4213/rm9502 http://mi.mathnet.ru/eng/umn/v68/i1/p199
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
S. A. Stepin, “An upper bound for the number of eigenvalues of a non-self-adjoint Schröbinger operator”, Dokl. Math., 89:2 (2014), 202–205
-
S. A. Stepin, “An estimate for the number of eigenvalues of the Schrödinger operator with a complex potential”, Sb. Math., 208:2 (2017), 269–284
-
R. L. Frank, B. Simon, “Eigenvalue bounds for Schrödinger operators with complex potentials. II”, J. Spectr. Theory, 7:3 (2017), 633–658
|
Number of views: |
This page: | 486 | Full text: | 73 | References: | 50 | First page: | 84 |
|