RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2013, Volume 68, Issue 1(409), Pages 197–198 (Mi umn9508)  

This article is cited in 5 scientific papers (total in 5 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

A differential equation for Hermite–Padé polynomials

A. Martínez-Finkelshteina, E. A. Rakhmanovbc, S. P. Suetinc

a Universidad de Almería, Spain
b University of South Florida, USA
c Steklov Mathematical Institute of the Russian Academy of Sciences

Funding Agency Grant Number
Russian Foundation for Basic Research 11-01-00330
Ministry of Education and Science of the Russian Federation НШ-4664.2012.1
European Regional Development Fund MTM2011-28952-C02-01
Consejería Economía, Innovación, Ciencia y Empleo, Junta de Andalucía P09-FQM-4643
P09-FQM-229


DOI: https://doi.org/10.4213/rm9508

Full text: PDF file (419 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2013, 68:1, 183–185

Bibliographic databases:

Document Type: Article
MSC: 41A21
Presented: A. G. Sergeev
Accepted: 21.01.2013

Citation: A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “A differential equation for Hermite–Padé polynomials”, Uspekhi Mat. Nauk, 68:1(409) (2013), 197–198; Russian Math. Surveys, 68:1 (2013), 183–185

Citation in format AMSBIB
\Bibitem{MarRakSue13}
\by A.~Mart{\'\i}nez-Finkelshtein, E.~A.~Rakhmanov, S.~P.~Suetin
\paper A differential equation for Hermite--Pad\'e polynomials
\jour Uspekhi Mat. Nauk
\yr 2013
\vol 68
\issue 1(409)
\pages 197--198
\mathnet{http://mi.mathnet.ru/umn9508}
\crossref{https://doi.org/10.4213/rm9508}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3088082}
\zmath{https://zbmath.org/?q=an:06170782}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68..183M}
\elib{http://elibrary.ru/item.asp?id=20423483}
\transl
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 1
\pages 183--185
\crossref{https://doi.org/10.1070/RM2013v068n01ABEH004825}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000318537500005}
\elib{http://elibrary.ru/item.asp?id=20442963}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877067559}


Linking options:
  • http://mi.mathnet.ru/eng/umn9508
  • https://doi.org/10.4213/rm9508
  • http://mi.mathnet.ru/eng/umn/v68/i1/p197

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Komlov, S. P. Suetin, “An asymptotic formula for a two-point analogue of Jacobi polynomials”, Russian Math. Surveys, 68:4 (2013), 779–781  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. A. V. Komlov, S. P. Suetin, “Strong asymptotics of two-point Padé approximants for power-like multivalued functions”, Dokl. Math., 89:2 (2014), 165–168  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    3. S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Martinez-Finkelshtein A., Rakhmanov E.A., Suetin S.P., “Asymptotics of Type I Hermite–Padé Polynomials for Semiclassical Functions”, Modern Trends in Constructive Function Theory, Contemporary Mathematics, 661, eds. Hardin D., Lubinsky D., Simanek B., Amer Mathematical Soc, 2016, 199+  crossref  mathscinet  zmath  isi
    5. Martinez-Finkelshtein A., Rakhmanov E.A., Do Orthogonal Polynomials Dream of Symmetric Curves?, Found. Comput. Math., 16:6 (2016), 1697–1736  crossref  mathscinet  zmath  isi  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:460
    Full text:104
    References:25
    First page:35

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019