RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2013, Volume 68, Issue 4(412), Pages 181–182 (Mi umn9523)  

This article is cited in 8 scientific papers (total in 8 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Examples of embedding problems the only solutions of which are fields

D. D. Kiselev

Moscow State University

DOI: https://doi.org/10.4213/rm9523

Full text: PDF file (313 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2013, 68:4, 776–778

Bibliographic databases:

MSC: Primary 12F12; Secondary 11R32
Presented: Э. Б. Винберг
Accepted: 05.04.2013

Citation: D. D. Kiselev, “Examples of embedding problems the only solutions of which are fields”, Uspekhi Mat. Nauk, 68:4(412) (2013), 181–182; Russian Math. Surveys, 68:4 (2013), 776–778

Citation in format AMSBIB
\Bibitem{Kis13}
\by D.~D.~Kiselev
\paper Examples of embedding problems the only solutions of which are fields
\jour Uspekhi Mat. Nauk
\yr 2013
\vol 68
\issue 4(412)
\pages 181--182
\mathnet{http://mi.mathnet.ru/umn9523}
\crossref{https://doi.org/10.4213/rm9523}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3154820}
\zmath{https://zbmath.org/?q=an:06238980}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68..776K}
\elib{http://elibrary.ru/item.asp?id=20423515}
\transl
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 4
\pages 776--778
\crossref{https://doi.org/10.1070/RM2013v068n04ABEH004855}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000326685900007}
\elib{http://elibrary.ru/item.asp?id=21895713}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888348821}


Linking options:
  • http://mi.mathnet.ru/eng/umn9523
  • https://doi.org/10.4213/rm9523
  • http://mi.mathnet.ru/eng/umn/v68/i4/p181

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. D. Kiselev, “Ultrasolvable covering of the group $Z_2$ by the groups $Z_8$, $Z_{16}$ and $Q_8$”, J. Math. Sci. (N. Y.), 219:4 (2016), 523–538  mathnet  crossref  mathscinet
    2. D. D. Kiselev, “On ultrasolvable embedding problems with cyclic kernel”, Russian Math. Surveys, 71:6 (2016), 1149–1151  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. D. D. Kiselev, “On ultrasolvability of $p$-extensions of an abelian group by a cyclic kernel”, J. Math. Sci. (N. Y.), 232:5 (2018), 662–676  mathnet  crossref  mathscinet
    4. D. D. Kiselev, I. A. Chubarov, “On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for $p>2$”, J. Math. Sci. (N. Y.), 232:5 (2018), 677–692  mathnet  crossref  mathscinet
    5. D. D. Kiselev, “Metacyclic $2$-extensions with cyclic kernel and the ultrasolvability questions”, J. Math. Sci. (N. Y.), 240:4 (2019), 447–458  mathnet  crossref
    6. D. D. Kiselev, “Minimal $p$-extensions and the embedding problem”, Commun. Algebr., 46:1 (2018), 290–321  crossref  mathscinet  zmath  isi  scopus
    7. D. D. Kiselev, A. V. Yakovlev, “Ultrasolvable and Sylow extensions with cyclic kernel”, St. Petersburg Math. J., 30:1 (2019), 95–102  mathnet  crossref  mathscinet  isi  elib
    8. D. D. Kiselev, “Ultrasoluble coverings of some nilpotent groups by a cyclic group over number fields and related questions”, Izv. Math., 82:3 (2018), 512–531  mathnet  crossref  crossref  adsnasa  isi  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:265
    Full text:85
    References:33
    First page:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020