|
This article is cited in 3 scientific papers (total in 3 papers)
In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society
An asymptotic formula for a two-point analogue of Jacobi polynomials
A. V. Komlov, S. P. Suetin Steklov Mathematical Institute of the Russian Academy of Sciences
DOI:
https://doi.org/10.4213/rm9545
Full text:
PDF file (356 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 2013, 68:4, 779–781
Bibliographic databases:
MSC: 41A21 Presented: Д. В. Трещев Accepted: 20.07.2013
Citation:
A. V. Komlov, S. P. Suetin, “An asymptotic formula for a two-point analogue of Jacobi polynomials”, Uspekhi Mat. Nauk, 68:4(412) (2013), 183–184; Russian Math. Surveys, 68:4 (2013), 779–781
Citation in format AMSBIB
\Bibitem{KomSue13}
\by A.~V.~Komlov, S.~P.~Suetin
\paper An asymptotic formula for a~two-point analogue of Jacobi polynomials
\jour Uspekhi Mat. Nauk
\yr 2013
\vol 68
\issue 4(412)
\pages 183--184
\mathnet{http://mi.mathnet.ru/umn9545}
\crossref{https://doi.org/10.4213/rm9545}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3154821}
\zmath{https://zbmath.org/?q=an:1284.41006}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68..779K}
\elib{https://elibrary.ru/item.asp?id=20423516}
\transl
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 4
\pages 779--781
\crossref{https://doi.org/10.1070/RM2013v068n04ABEH004856}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000326685900008}
\elib{https://elibrary.ru/item.asp?id=21895758}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888362598}
Linking options:
http://mi.mathnet.ru/eng/umn9545https://doi.org/10.4213/rm9545 http://mi.mathnet.ru/eng/umn/v68/i4/p183
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
R. K. Kovacheva, S. P. Suetin, “Distribution of zeros of the Hermite–Padé polynomials for a system of three functions, and the Nuttall condenser”, Proc. Steklov Inst. Math., 284 (2014), 168–191
-
S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951
-
Buslaev V.I., Suetin S.P., “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206:SI (2016), 48–67
|
Number of views: |
This page: | 411 | Full text: | 101 | References: | 41 | First page: | 27 |
|