RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



УМН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


УМН, 2013, том 68, выпуск 6(414), страницы 59–106 (Mi umn9552)  

Эта публикация цитируется в 20 научных статьях (всего в 20 статьях)

Уравнение Янга–Бакстера, перестановки параметров и эллиптический бета-интеграл

С. Э. Деркачевa, В. П. Спиридоновbc

a Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН
b Max Planck Institute for Mathematics, Bonn, Germany
c Лаборатория теоретической физики им. Н. Н. Боголюбова, Объединенный институт ядерных исследований

Аннотация: Строится бесконечномерное решение уравнения Янга–Бакстера ранга $1$, которое представляется интегральным оператором с эллиптическим гипергеометрическим ядром, действующим в пространстве функций двух комплексных переменных. Этот $\mathrm{R}$-оператор сплетает произведение двух стандартных $\mathrm{L}$-операторов, ассоциированных с алгеброй Склянина, эллиптической деформацией алгебры $\operatorname{sl}(2)$. Он строится из трех базисных операторов $\mathrm{S}_1$$\mathrm{S}_2$ и $\mathrm{S}_3$, генерирующих группу перестановок четырех параметров $\mathfrak{S}_4$. Справедливость ключевых соотношений Кокстера (включая соотношение звезда-треугольник) основана на формуле для вычисления эллиптического бета-интеграла и лемме Бейли, ассоциированной с эллиптическим преобразованием Фурье. Операторы $\mathrm{S}_j$ определяются однозначно с помощью эллиптического модулярного дубля. Библиография: 37 названий.

Ключевые слова: уравнение Янга–Бакстера, алгебра Склянина, группа перестановок, эллиптический бета-интеграл

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 11-01-00570
11-01-12037
12-02-91052
11-01-00980
Deutsche Forschungsgemeinschaft KI 623/8-1
Министерство образования и науки Российской Федерации 12-09-0064
Работа первого автора выполнена при поддержке РФФИ (гранты № 11-01-00570, 11-01-12037, 12-02-91052) и Немецкой ассоциации содействия исследованиям (грант KI 623/8-1). Работа второго автора выполнена при поддержке РФФИ (грант № 11-01-00980) и НИУ «ВШЭ» (грант № 12-09-0064).


DOI: https://doi.org/10.4213/rm9552

Полный текст: PDF файл (858 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Russian Mathematical Surveys, 2013, 68:6, 1027–1072

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.3+517.9
MSC: Primary 16T25; Secondary 33E20
Поступила в редакцию: 29.11.2012

Образец цитирования: С. Э. Деркачев, В. П. Спиридонов, “Уравнение Янга–Бакстера, перестановки параметров и эллиптический бета-интеграл”, УМН, 68:6(414) (2013), 59–106; Russian Math. Surveys, 68:6 (2013), 1027–1072

Цитирование в формате AMSBIB
\RBibitem{DerSpi13}
\by С.~Э.~Деркачев, В.~П.~Спиридонов
\paper Уравнение Янга--Бакстера, перестановки~параметров и эллиптический бета-интеграл
\jour УМН
\yr 2013
\vol 68
\issue 6(414)
\pages 59--106
\mathnet{http://mi.mathnet.ru/umn9552}
\crossref{https://doi.org/10.4213/rm9552}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3203193}
\zmath{https://zbmath.org/?q=an:06286870}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68.1027D}
\elib{http://elibrary.ru/item.asp?id=21277012}
\transl
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 6
\pages 1027--1072
\crossref{https://doi.org/10.1070/RM2013v068n06ABEH004869}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000332667100002}
\elib{http://elibrary.ru/item.asp?id=21917430}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899717488}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/umn9552
  • https://doi.org/10.4213/rm9552
  • http://mi.mathnet.ru/rus/umn/v68/i6/p59

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Доклады по теме:

    Эта публикация цитируется в следующих статьяx:
    1. V. V. Mangazeev, “$Q$-operators in the six-vertex model”, Nuclear Phys. B, 886 (2014), 166–184  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    2. V. P. Spiridonov, G. S. Vartanov, “Vanishing superconformal indices and the chiral symmetry breaking”, J. High Energy Phys., 2014, no. 6, 062  crossref  isi  scopus
    3. С. Э. Деркачёв, В. П. Спиридонов, “Конечномерные представления эллиптического модулярного дубля”, ТМФ, 183:2 (2015), 177–201  mathnet  crossref  mathscinet  adsnasa  elib; S. È. Derkachev, V. P. Spiridonov, “Finite-dimensional representations of the elliptic modular double”, Theoret. and Math. Phys., 183:2 (2015), 597–618  crossref  isi
    4. I. Gahramanov, V. P. Spiridonov, “The star-triangle relation and $3d$ superconformal indices”, J. High Energ. Phys., 2015:8 (2015), 040, 22 pp.  crossref  mathscinet  isi  scopus
    5. С. Э. Деркачев, Д. И. Чичерин, “Матричная факторизация решений уравнения Янга–Бакстера”, Вопросы квантовой теории поля и статистической физики. 23, Зап. научн. сем. ПОМИ, 433, ПОМИ, СПб., 2015, 156–185  mathnet  mathscinet; S. E. Derkachov, D. I. Chicherin, “Matrix factorization for solutions of the Yang–Baxter equation”, J. Math. Sci. (N. Y.), 213:5 (2016), 723–742  crossref
    6. Н. М. Боголюбов, К. Л. Малышев, “Интегрируемые модели и комбинаторика”, УМН, 70:5(425) (2015), 3–74  mathnet  crossref  mathscinet  zmath  adsnasa  elib; N. M. Bogolyubov, K. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789–856  crossref  isi
    7. J. Yagi, “Quiver gauge theories and integrable lattice models”, J. High Energy Phys., 2015, no. 10, 065, 46 pp.  crossref  mathscinet  isi  elib  scopus
    8. Dmitry Chicherin, Sergey E. Derkachov, Vyacheslav P. Spiridonov, “From Principal Series to Finite-Dimensional Solutions of the Yang–Baxter Equation”, SIGMA, 12 (2016), 028, 34 pp.  mathnet  crossref
    9. D. Chicherin, S. E. Derkachov, V. P. Spiridonov, “New elliptic solutions of the Yang–Baxter equation”, Comm. Math. Phys., 345:2 (2016), 507–543  crossref  mathscinet  zmath  isi  elib  scopus
    10. K. Maruyoshi, J. Yagi, “Surface defects as transfer matrices”, Prog. Theor. Exp. Phys., 2016:11 (2016), 113B01  crossref  mathscinet  zmath  isi  elib  scopus
    11. F. Brünner, V. P. Spiridonov, “A duality web of linear quivers”, Phys. Lett. B, 761 (2016), 261–264  crossref  zmath  isi  scopus
    12. I. Gahramanov, A. P. Kels, “The star-triangle relation, lens partition function, and hypergeometric sum/integrals”, J. High Energy Phys., 2017, no. 2, 040  crossref  mathscinet  isi  scopus
    13. J. Yagi, “Surface defects and elliptic quantum groups”, J. High Energy Phys., 2017, no. 6, 013, 31 pp.  crossref  mathscinet  isi  scopus
    14. F. Brünner, V. P. Spiridonov, “4d $\mathcal N=1$ quiver gauge theories and the $A_n$ Bailey lemma”, J. High Energy Phys., 2018, no. 3, 105, 29 pp.  crossref  mathscinet  zmath  isi  scopus
    15. V. P. Spiridonov, “Rarefied elliptic hypergeometric functions”, Adv. Math., 331 (2018), 830–873  crossref  mathscinet  zmath  isi  scopus
    16. E. M. Rains, “Multivariate quadratic transformations and the interpolation kernel”, SIGMA, 14 (2018), 019, 69 pp.  mathnet  crossref  isi  scopus
    17. B. Nazzal, Sh. S. Razamat, “Surface defects in e-string compactifications and the van Diejen model”, SIGMA, 14 (2018), 036, 20 pp.  mathnet  crossref
    18. D. Chicherin, V. P. Spiridonov, “The hyperbolic modular double and the Yang-Baxter equation”, Representation Theory, Special Functions and Painleve Equations - RIMS 2015, Advanced Studies in Pure Mathematics, 76, eds. H. Konno, H. Sakai, J. Shiraishi, T. Suzuki, Y. Yamada, Math Soc Japan, 2018, 95–123  mathscinet  isi
    19. V. P. Spiridonov, K. Yu. Magadov, “Matrix Bailey lemma and the star-triangle relation”, SIGMA, 14 (2018), 121, 13 pp.  mathnet  crossref
    20. I. Gahramanov, Sh. Jafarzade, “Integrable lattice spin models from supersymmetric dualities”, Phys. Part. Nuclei Lett., 15:6 (2018), 650–667  crossref  isi  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Просмотров:
    Эта страница:524
    Полный текст:133
    Литература:34
    Первая стр.:25
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019