|
This article is cited in 3 scientific papers (total in 3 papers)
Interpolation functions and the Lions–Peetre interpolation construction
V. I. Ovchinnikov Voronezh State University
Abstract:
The generalization of the Lions–Peetre interpolation method of means considered in the present survey is less general than the generalizations known since the 1970s. However, our level of generalization is sufficient to encompass spaces that are most natural from the point of view of applications, like the Lorentz spaces, Orlicz spaces, and their analogues. The spaces $\varphi(X_0,X_1)_{p_0,p_1}$ considered here have three parameters: two positive numerical parameters $p_0$ and $p_1$ of equal standing, and a function parameter $\varphi$. For $p_0\ne p_1$ these spaces can be regarded as analogues of Orlicz spaces under the real interpolation method. Embedding criteria are established for the family of spaces $\varphi(X_0,X_1)_{p_0,p_1}$, together with optimal interpolation theorems that refine all the known interpolation theorems for operators acting on couples of weighted spaces $L_p$ and that extend these theorems beyond scales of spaces. The main specific feature is that the function parameter $\varphi$ can be an arbitrary natural functional parameter in the interpolation.
Bibliography: 43 titles.
Keywords:
interpolation spaces, interpolation functors with function parameters, interpolation orbits, orbits with respect to von Neumann–Schatten operators, optimal interpolation theorems, embedding theorems for Orlicz–Sobolev spaces.
DOI:
https://doi.org/10.4213/rm9568
Full text:
PDF file (921 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 2014, 69:4, 681–741
Bibliographic databases:
UDC:
517.982
MSC: Primary 46B70; Secondary 46M35, 47A57 Received: 24.12.2013
Citation:
V. I. Ovchinnikov, “Interpolation functions and the Lions–Peetre interpolation construction”, Uspekhi Mat. Nauk, 69:4(418) (2014), 103–168; Russian Math. Surveys, 69:4 (2014), 681–741
Citation in format AMSBIB
\Bibitem{Ovc14}
\by V.~I.~Ovchinnikov
\paper Interpolation functions and~the~Lions--Peetre~interpolation construction
\jour Uspekhi Mat. Nauk
\yr 2014
\vol 69
\issue 4(418)
\pages 103--168
\mathnet{http://mi.mathnet.ru/umn9568}
\crossref{https://doi.org/10.4213/rm9568}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3400537}
\zmath{https://zbmath.org/?q=an:06381132}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014RuMaS..69..681O}
\elib{https://elibrary.ru/item.asp?id=21826598}
\transl
\jour Russian Math. Surveys
\yr 2014
\vol 69
\issue 4
\pages 681--741
\crossref{https://doi.org/10.1070/RM2014v069n04ABEH004908}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000344817300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84910005476}
Linking options:
http://mi.mathnet.ru/eng/umn9568https://doi.org/10.4213/rm9568 http://mi.mathnet.ru/eng/umn/v69/i4/p103
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
L. Kussainova, A. Ospanova, “Interpolation theorems for weighted Sobolev spaces”, World Congress on Engineering, WCE 2015, V. I, Lecture Notes in Engineering and Computer Science, eds. Ao S., Gelman L., Hukins D., Hunter A., Korsunsky A., Int. Assoc. Engin., 2015, 25–28
-
V. I. Dmitriev, “On one transformation of parameter-spaces of real interpolation method”, Russian Math. (Iz. VUZ), 60:12 (2016), 36–42
-
Gogatishvili A. Neves J.S., “Weighted Norm Inequalities For Positive Operators Restricted on the Cone of Lambda-Quasiconcave Functions”, Proc. R. Soc. Edinb. Sect. A-Math., 150:1 (2020), 17–39
|
Number of views: |
This page: | 453 | Full text: | 122 | References: | 55 | First page: | 38 |
|