RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2014, Volume 69, Issue 2(416), Pages 3–22 (Mi umn9578)  

This article is cited in 8 scientific papers (total in 8 papers)

Non-uniqueness for the Euler equations: the effect of the boundary

C. Bardosa, L. Székelyhidi, Jr.b, E. Wiedemanncd

a Université Paris VII – Denis Diderot, Paris, France
b Universität Leipzig, Mathematisches Institut, Leipzig, Germany
c University of British Columbia, Vancouver, Canada
d Pacific Institute for the Mathematical Science, Vancouver, Canada

Abstract: Rotational initial data is considered for the two-dimensional incompressible Euler equations on an annulus. With use of the convex integration framework it is shown that there exist infinitely many admissible weak solutions (that is, with non-increasing energy) for such initial data. As a consequence, on bounded domains there exist admissible weak solutions which are not dissipative in the sense of Lions, as opposed to the case without physical boundaries. Moreover, it is shown that admissible solutions are dissipative if they are Hölder continuous near the boundary of the domain.
Bibliography: 34 titles.

Keywords: Euler equations, non-uniqueness, wild solutions, dissipative solutions, boundary effects, convex integration, inviscid limit, rotational flows.

Funding Agency Grant Number
European Research Council 277993
Fondation Sciences Mathématiques de Paris
The research of the second author was supported by ERC Grant Agreement No. 277993. Part of this work was done while the third author was a~visitor to the project "Instabilities in Hydrodynamics" of the Fondation Sciences Mathématiques de Paris. He gratefully acknowledges the Fondation's support.


DOI: https://doi.org/10.4213/rm9578

Full text: PDF file (612 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2014, 69:2, 189–207

Bibliographic databases:

Document Type: Article
UDC: 517.958+517.951
MSC: 35D30, 35Q35, 76B03
Received: 27.10.2013

Citation: C. Bardos, L. Székelyhidi, Jr., E. Wiedemann, “Non-uniqueness for the Euler equations: the effect of the boundary”, Uspekhi Mat. Nauk, 69:2(416) (2014), 3–22; Russian Math. Surveys, 69:2 (2014), 189–207

Citation in format AMSBIB
\Bibitem{BarSzeWie14}
\by C.~Bardos, L.~Sz\'ekelyhidi, Jr., E.~Wiedemann
\paper Non-uniqueness for the Euler equations: the~effect of the boundary
\jour Uspekhi Mat. Nauk
\yr 2014
\vol 69
\issue 2(416)
\pages 3--22
\mathnet{http://mi.mathnet.ru/umn9578}
\crossref{https://doi.org/10.4213/rm9578}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3236935}
\zmath{https://zbmath.org/?q=an:1301.35097}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014RuMaS..69..189B}
\elib{http://elibrary.ru/item.asp?id=21826571}
\transl
\jour Russian Math. Surveys
\yr 2014
\vol 69
\issue 2
\pages 189--207
\crossref{https://doi.org/10.1070/RM2014v069n02ABEH004886}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000338728500001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904304977}


Linking options:
  • http://mi.mathnet.ru/eng/umn9578
  • https://doi.org/10.4213/rm9578
  • http://mi.mathnet.ru/eng/umn/v69/i2/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. Gwiazda, A. Świerczewska-Gwiazda, E. Wiedemann, “Weak-strong uniqueness for measure-valued solutions of some compressible fluid models”, Nonlinearity, 28:11 (2015), 3873–3890  crossref  mathscinet  zmath  isi  elib  scopus
    2. C. Bardos, T. T. Nguyen, “Remarks on the inviscid limit for the compressible flows”, Recent Advances in Partial Differential Equations and Applications, Contemporary Mathematics, 666, eds. Radulescu V., Sequeira A., Solonnikov V., Amer. Math. Soc., Providence, RI, 2016, 55–67  crossref  mathscinet  zmath  isi
    3. P. Constantin, T. Elgind, M. Ignatova, V. Vicol, “Remarks on the inviscid limit for the Navier–Stokes equations for uniformly bounded velocity fields”, SIAM J. Math. Anal., 49:3 (2017), 1932–1946  crossref  mathscinet  zmath  isi  scopus
    4. P. Constantin, V. Vicol, “Remarks on high Reynolds numbers hydrodynamics and the inviscid limit”, J. Nonlinear Sci., 28:2 (2018), 711–724  crossref  mathscinet  zmath  isi  scopus
    5. E. Wiedemann, “Localised relative energy and finite speed of propagation for compressible flows”, J. Differential Equations, 265:4 (2018), 1467–1487  crossref  mathscinet  isi  scopus
    6. C. Foerster, L. Szekelyhidi, “Piecewise constant subsolutions for the Muskat problem”, Commun. Math. Phys., 363:3 (2018), 1051–1080  crossref  mathscinet  zmath  isi  scopus
    7. T. D. Drivas, H. Q. Nguyen, “Onsager's conjecture and anomalous dissipation on domains with boundary”, SIAM J. Math. Anal., 50:5 (2018), 4785–4811  crossref  mathscinet  zmath  isi
    8. Drivas T.D., Nguyen H.Q., “Remarks on the Emergence of Weak Euler Solutions in the Vanishing Viscosity Limit”, J. Nonlinear Sci., 29:2 (2019), 709–721  crossref  mathscinet  isi  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:417
    Full text:71
    References:29
    First page:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019