Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2014, Volume 69, Issue 2(416), Pages 177–200 (Mi umn9583)  

This article is cited in 22 scientific papers (total in 22 papers)

A unified approach to determining forms for the 2D Navier–Stokes equations — the general interpolants case

C. Foiasa, M. S. Jollyb, R. Kravchenkoc, E. S. Titide

a Texas A&M University, College Station, USA
b Indiana University, Bloomington, USA
c University of Chicago, Chicago, USA
d Weizmann Institute of Science, Rehovot, Israel
e University of California, Irvine, USA

Abstract: It is shown that the long-time dynamics (the global attractor) of the 2D Navier–Stokes system is embedded in the long-time dynamics of an ordinary differential equation, called a determining form, in a space of trajectories which is isomorphic to $C^1_b(\mathbb{R};\mathbb{R}^N)$ for sufficiently large $N$ depending on the physical parameters of the Navier–Stokes equations. A unified approach is presented, based on interpolant operators constructed from various determining parameters for the Navier–Stokes equations, namely, determining nodal values, Fourier modes, finite volume elements, finite elements, and so on. There are two immediate and interesting consequences of this unified approach. The first is that the constructed determining form has a Lyapunov function, and thus its solutions converge to the set of steady states of the determining form as the time goes to infinity. The second is that these steady states of the determining form can be uniquely identified with the trajectories in the global attractor of the Navier–Stokes system. It should be added that this unified approach is general enough that it applies, in an almost straightforward manner, to a whole class of dissipative dynamical systems.
Bibliography: 23 titles.

Keywords: Navier–Stokes equation, inertial manifold, determining forms, determining modes, dissipative dynamical systems.

Funding Agency Grant Number
National Science Foundation DMS-1109784
DMS-1008661
DMS-1109638
DMS-1009950
DMS-1109640
DMS-1109645
Minerva Stiftung
The work of the first author was supported by NSF (grant no. DMS-1109784), that of the second author by NSF (grant nos. DMS-1008661 and DMS-1109638), and that of the fourth author by NSF (grant nos. DMS-1009950, DMS-1109640, and DMS-1109645), as well as the Minerva Stiftung/Foundation.


DOI: https://doi.org/10.4213/rm9583

Full text: PDF file (679 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2014, 69:2, 359–381

Bibliographic databases:

UDC: 517.954+517.957
MSC: Primary 35Q30; Secondary 76D05
Received: 27.10.2013

Citation: C. Foias, M. S. Jolly, R. Kravchenko, E. S. Titi, “A unified approach to determining forms for the 2D Navier–Stokes equations — the general interpolants case”, Uspekhi Mat. Nauk, 69:2(416) (2014), 177–200; Russian Math. Surveys, 69:2 (2014), 359–381

Citation in format AMSBIB
\Bibitem{FoiJolKra14}
\by C.~Foias, M.~S.~Jolly, R.~Kravchenko, E.~S.~Titi
\paper A unified approach to determining forms for the 2D Navier--Stokes equations --- the general interpolants case
\jour Uspekhi Mat. Nauk
\yr 2014
\vol 69
\issue 2(416)
\pages 177--200
\mathnet{http://mi.mathnet.ru/umn9583}
\crossref{https://doi.org/10.4213/rm9583}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3236940}
\zmath{https://zbmath.org/?q=an:1301.35108}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014RuMaS..69..359F}
\elib{https://elibrary.ru/item.asp?id=21826580}
\transl
\jour Russian Math. Surveys
\yr 2014
\vol 69
\issue 2
\pages 359--381
\crossref{https://doi.org/10.1070/RM2014v069n02ABEH004891}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000338728500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904336291}


Linking options:
  • http://mi.mathnet.ru/eng/umn9583
  • https://doi.org/10.4213/rm9583
  • http://mi.mathnet.ru/eng/umn/v69/i2/p177

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Azouani, E. S. Titi, “Feedback control of nonlinear dissipative systems by finite determining parameters—a reaction-diffusion paradigm”, Evol. Equ. Control Theory, 3:4 (2014), 579–594  crossref  mathscinet  zmath  isi  scopus
    2. H. Bessaih, E. Olson, E. S. Titi, “Continuous data assimilation with stochastically noisy data”, Nonlinearity, 28:3 (2015), 729–753  crossref  mathscinet  zmath  adsnasa  isi  scopus
    3. M. S. Jolly, T. Sadigov, E. S. Titi, “A determining form for the damped driven nonlinear Schrödinger equation Fourier modes case”, J. Differential Equations, 258:8 (2015), 2711–2744  crossref  mathscinet  zmath  adsnasa  isi  scopus
    4. A. Farhat, M. S. Jolly, E. S. Titi, “Continuous data assimilation for the 2D Bénard convection through velocity measurements alone”, Phys. D, 303 (2015), 59–66  crossref  mathscinet  zmath  isi  scopus
    5. M. Abu Hamed, Ya. Guo, E. S. Titi, “Inertial manifolds for certain subgrid-scale $\alpha$-models of turbulence”, SIAM J. Appl. Dyn. Syst., 14:3 (2015), 1308–1325  crossref  mathscinet  zmath  isi  scopus
    6. A. Farhat, E. Lunasin, E. S. Titi, “Abridged continuous data assimilation for the 2D Navier–Stokes equations utilizing measurements of only one component of the velocity field”, J. Math. Fluid Mech., 18:1 (2016), 1–23  crossref  mathscinet  zmath  isi  scopus
    7. D. A. F. Albanez, H. J. Nussenzveig Lopes, E. S. Titi, “Continuous data assimilation for the three-dimensional Navier–Stokes-$\alpha$ model”, Asymptot. Anal., 97:1-2 (2016), 139–164  crossref  mathscinet  zmath  isi  scopus
    8. Lukaszewicz G., Kalita P., “Navier–Stokes Equations: An Introduction With Applications”, Navier-Stokes Equations: An Introduction With Applications, Advances in Mechanics and Mathematics, Springer, 2016, 1–390  crossref  mathscinet  isi
    9. M. S. Jolly, T. Sadigov, E. S. Titi, “Determining form and data assimilation algorithm for weakly damped and driven Korteweg–de Vries equation — Fourier modes case”, Nonlinear Anal. Real World Appl., 36 (2017), 287–317  crossref  mathscinet  zmath  isi  scopus
    10. Lunasin E., Titi E.S., “Finite Determining Parameters Feedback Control For Distributed Nonlinear Dissipative Systems - a Computational Study”, Evol. Equ. Control Theory, 6:4 (2017), 535–557  crossref  mathscinet  zmath  isi  scopus
    11. Foias C., Jolly M.S., Lithio D., Titi E.S., “One-Dimensional Parametric Determining Form For the Two-Dimensional Navier–Stokes Equations”, J. Nonlinear Sci., 27:5 (2017), 1513–1529  crossref  mathscinet  zmath  isi  scopus
    12. Bai L., Yang M., “A Determining Form For a Nonlocal System”, Adv. Nonlinear Stud., 17:4 (2017), 705–713  crossref  mathscinet  zmath  isi  scopus
    13. A. Biswas, J. Hudson, A. Larios, Yu. Pei, “Continuous data assimilation for the 2D magnetohydrodynamic equations using one component of the velocity and magnetic fields”, Asymptotic Anal., 108:1-2 (2018), 1–43  crossref  mathscinet  isi  scopus
    14. Ch. R. Doering, E. M. Lunasin, A. Mazzucato, “Introduction to special issue: nonlinear partial differential equations in mathematical fluid dynamics”, Physica D, 376:SI (2018), 1–4  crossref  mathscinet  isi  scopus
    15. M. Ozluk, M. Kaya, “On the weak solutions and determining modes of the g-Benard problem”, Hacet. J. Math. Stat., 47:6 (2018), 1453–1466  crossref  isi
    16. A. Larios, L. G. Rebholz, C. Zerfas, “Global in time stability and accuracy of imex-fem data assimilation schemes for Navier-Stokes equations”, Comput. Meth. Appl. Mech. Eng., 345 (2019), 1077–1093  crossref  mathscinet  isi
    17. A. Biswas, C. Foias, C. F. Mondaini, E. S. Titi, “Downscaling data assimilation algorithm with applications to statistical solutions of the Navier-Stokes equations”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 36:2 (2019), 295–326  crossref  mathscinet  zmath  isi  scopus
    18. A. Cheskidov, M. Dai, “Kolmogorov's dissipation number and the number of degrees of freedom for the 3D Navier-Stokes equations”, Proc. R. Soc. Edinb. Sect. A-Math., 149:2 (2019), 429–446  crossref  mathscinet  isi  scopus
    19. M. S. Jolly, V. R. Martinez, T. Sadigov, E. S. Titi, “A determining form for the subcritical surface quasi-geostrophic equation”, J. Dyn. Differ. Equ., 31:3, SI (2019), 1457–1494  crossref  isi
    20. Larios A., Pei Yu., “Approximate Continuous Data Assimilation of the 2D Navier-Stokes Equations Via the Voigt-Regularization With Observable Data”, Evol. Equ. Control Theory, 9:3 (2020), 733–751  crossref  mathscinet  zmath  isi
    21. Cheskidov A., Dai M., “On the Determining Wavenumber For the Nonautonomous Subcritical Sqg Equation”, J. Dyn. Differ. Equ., 32:3 (2020), 1511–1525  crossref  mathscinet  zmath  isi
    22. Carlson E., Hudson J., Larios A., “Parameter Recovery For the 2 Dimensional Navier-Stokes Equations Via Continuous Data Assimilation”, SIAM J. Sci. Comput., 42:1 (2020), A250–A270  crossref  mathscinet  zmath  isi
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:398
    Full text:154
    References:35
    First page:18

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021