General information
Latest issue
Impact factor
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Uspekhi Mat. Nauk:

Personal entry:
Save password
Forgotten password?

Uspekhi Mat. Nauk, 2014, Volume 69, Issue 5(419), Pages 3–80 (Mi umn9603)  

This article is cited in 14 scientific papers (total in 15 papers)

Averaging, passage through resonances, and capture into resonance in two-frequency systems

A. I. Neishtadtab

a Space Research Institute, Moscow, Russia
b Loughborough University, UK

Abstract: Applying small perturbations to an integrable system leads to its slow evolution. For an approximate description of this evolution the classical averaging method prescribes averaging the rate of evolution over all the phases of the unperturbed motion. This simple recipe does not always produce correct results, because of resonances arising in the process of evolution. The phenomenon of capture into resonance consists in the system starting to evolve in such a way as to preserve the resonance property once it has arisen. This paper is concerned with application of the averaging method to a description of evolution in two-frequency systems. It is assumed that the trajectories of the averaged system intersect transversally the level surfaces of the frequency ratio and that certain other conditions of general position are satisfied. The rate of evolution is characterized by a small parameter $\varepsilon$. The main content of the paper is a proof of the following result: outside a set of initial data with measure of order $\sqrt \varepsilon$ the averaging method describes the evolution to within $O(\sqrt \varepsilon |\ln\varepsilon|)$ for periods of time of order $1/\varepsilon$. This estimate is sharp. The exceptional set of measure $\sqrt\varepsilon$ contains the initial data for phase points captured into resonance. A description of the motion of such phase points is given, along with a survey of related results on averaging. Examples of capture into resonance are presented for some problems in the dynamics of charged particles. Several open problems are stated.
Bibliography: 65 titles.

Keywords: averaging method, resonance.

Funding Agency Grant Number
Russian Foundation for Basic Research 13-01-00251
Ministry of Education and Science of the Russian Federation НШ-2964.2014.1
This research was carried out with the support of the Russian Foundation for Basic Research (grant no. 13-01-00251) and the programme "Leading Scientific Schools" (grant no. НШ-2964.2014.1).


Full text: PDF file (1416 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2014, 69:5, 771–843

Bibliographic databases:

MSC: Primary 34C29, 34F15, 70K65; Secondary 70H11, 78A35
Received: 22.06.2014

Citation: A. I. Neishtadt, “Averaging, passage through resonances, and capture into resonance in two-frequency systems”, Uspekhi Mat. Nauk, 69:5(419) (2014), 3–80; Russian Math. Surveys, 69:5 (2014), 771–843

Citation in format AMSBIB
\by A.~I.~Neishtadt
\paper Averaging, passage through resonances, and~capture into resonance in two-frequency systems
\jour Uspekhi Mat. Nauk
\yr 2014
\vol 69
\issue 5(419)
\pages 3--80
\jour Russian Math. Surveys
\yr 2014
\vol 69
\issue 5
\pages 771--843

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. M. Aseev, V. M. Buchstaber, R. I. Grigorchuk, V. Z. Grines, B. M. Gurevich, A. A. Davydov, A. Yu. Zhirov, E. V. Zhuzhoma, M. I. Zelikin, A. B. Katok, A. V. Klimenko, V. V. Kozlov, V. P. Leksin, M. I. Monastyrskii, A. I. Neishtadt, S. P. Novikov, E. A. Sataev, Ya. G. Sinai, A. M. Stepin, “Dmitrii Viktorovich Anosov (obituary)”, Russian Math. Surveys, 70:2 (2015), 369–381  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. A. V. Artemyev, R. Rankin, M. Blanco, “Electron trapping and acceleration by kinetic Alfven waves in the inner magnetosphere”, Journal of Geophysical Research: Space Physics, 120:12 (2015), 10305–10316  crossref  isi  scopus
    3. A. V. Artemyev, A. A. Vasiliev, D. Mourenas, A. I. Neishtadt, O. V. Agapitov, V. Krasnoselskikh, “Probability of relativistic electron trapping by parallel and oblique whistler-mode waves in Earth's radiation belts”, Phys. Plasmas, 22:11 (2015), 112903  crossref  isi  elib  scopus
    4. A. V. Artemyev, I. V. Zimovets, R. Rankin, “Electron trapping and acceleration by kinetic Alfvén waves in solar flares”, Astron. Astrophys., 589 (2016), A101, 7 pp.  crossref  isi  elib  scopus
    5. A. Artemyev, O. Agapitov, D. Mourenas, V. Krasnoselskikh, V. Shastun, F. Mozer, “Oblique Whistler-Mode Waves in the Earth's Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics”, Space Sci. Rev., 200:1 (2016), 261–355  crossref  isi  elib  scopus
    6. L. I. Manevitch, A. Kovaleva, “Autoresonant dynamics of weakly coupled oscillators”, Nonlinear Dynam., 84:2 (2016), 683–695  crossref  mathscinet  isi  elib  scopus
    7. L. M. Lerman, E. I. Yakovlev, “Geometry of slow–fast Hamiltonian systems and Painlevé equations”, Indag. Math. (N.S.), 27:5 (2016), 1219–1244  crossref  mathscinet  zmath  isi  scopus
    8. L. A. Kalyakin, “Uravnenie Penleve-II kak model rezonansnogo vzaimodeistviya ostsillyatorov”, Tr. IMM UrO RAN, 23, no. 2, 2017, 104–116  mathnet  crossref  elib
    9. Yu. M. Zabolotnov, V. V. Lyubimov, E. V. Kurkina, “Evaluation of asymmetric small satellite with electric propulsion perturbations when passing through resonance”, Electric propulsions and their application, Procedia Engineering, 185, Elsevier, 2017, 299–303  crossref  isi  scopus
    10. O. Shoshani, S. W. Shaw, M. I. Dykman, “Anomalous decay of nanomechanical modes going through nonlinear resonance”, Sci. Rep., 7 (2017), 18091  crossref  isi  scopus
    11. A. V. Artemyev, A. I. Neishtadt, A. A. Vasiliev, D. Mourenas, “Probabilistic approach to nonlinear wave-particle resonant interaction”, Phys. Rev. E, 95:2 (2017), 023204  crossref  isi  scopus
    12. L. A. Kalyakin, “Resonance capture in a system of two oscillators near equilibrium”, Theoret. and Math. Phys., 194:3 (2018), 331–346  mathnet  crossref  crossref  isi  elib
    13. L. A. Kalyakin, “Capture and holding of resonance far from equilibrium”, Ufa Math. J., 10:4 (2018), 64–76  mathnet  crossref  isi
    14. Artemyev V A., Vasiliev A.A., Neishtadt I A., “Charged Particle Nonlinear Resonance With Localized Electrostatic Wave-Packets”, Commun. Nonlinear Sci. Numer. Simul., 72 (2019), 392–406  crossref  mathscinet  isi  scopus
    15. Kalyakin L.A., “Capture and Keeping of a Resonance Near Equilibrium”, Russ. J. Math. Phys., 26:2 (2019), 152–167  crossref  isi
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:655
    Full text:115
    First page:61

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019