|
This article is cited in 1 scientific paper (total in 1 paper)
Turbulence for the generalised Burgers equation
A. A. Boritchev Université de Lyon,
Université Claude Bernard Lyon 1,
CNRS UMR 5208,
Institut Camille Jordan,
43 blvd. du 11 novembre 1918,
F-69622 Villeurbanne cedex,
France
Abstract:
This survey reviews rigorous results obtained by A. Biryuk and the author on turbulence for the generalised space-periodic Burgers equation
$$
u_t+f'(u)u_x=\nu u_{xx}+\eta,\qquad x \in S^1=\mathbb{R}/\mathbb{Z},
$$
where $f$ is smooth and strongly convex, and the constant $0<\nu\ll 1$ corresponds to the viscosity coefficient.
Both the unforced case ($\eta=0$) and the case when $\eta$ is a random force which is smooth with respect to $x$ and irregular (kick or white noise) with respect to $t$ are considered. In both cases sharp bounds of the form $C\nu^{-\delta}$, $\delta\geqslant 0$, are obtained for the Sobolev norms of $u$ averaged over time and over the ensemble, with the same value of $\delta$ for upper and lower bounds. These results yield sharp bounds for small-scale quantities characterising turbulence, confirming the physical predictions.
Bibliography: 56 titles.
Keywords:
Burgers equation, stochastic partial differential equations, turbulence, intermittency, stationary measure.
Funding Agency |
Grant Number |
European Research Council  |
BLOWDISOL BRIDGES |
A part of the present paper was completed during my stays at the AGM of the University of Cergy-Pontoise and at the Section
de Physique of the University of Geneva, supported respectively by the grants ERC BLOWDISOL and ERC BRIDGES. |
DOI:
https://doi.org/10.4213/rm9629
Full text:
PDF file (871 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 2014, 69:6, 957–994
Bibliographic databases:
UDC:
517.958:531.35
MSC: Primary 35Q53; Secondary 35B45 Received: 25.12.2013
Citation:
A. A. Boritchev, “Turbulence for the generalised Burgers equation”, Uspekhi Mat. Nauk, 69:6(420) (2014), 3–44; Russian Math. Surveys, 69:6 (2014), 957–994
Citation in format AMSBIB
\Bibitem{Bor14}
\by A.~A.~Boritchev
\paper Turbulence for the generalised Burgers equation
\jour Uspekhi Mat. Nauk
\yr 2014
\vol 69
\issue 6(420)
\pages 3--44
\mathnet{http://mi.mathnet.ru/umn9629}
\crossref{https://doi.org/10.4213/rm9629}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3400554}
\zmath{https://zbmath.org/?q=an:06434610}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014RuMaS..69..957B}
\elib{https://elibrary.ru/item.asp?id=22834474}
\transl
\jour Russian Math. Surveys
\yr 2014
\vol 69
\issue 6
\pages 957--994
\crossref{https://doi.org/10.1070/RM2014v069n06ABEH004925}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000350984400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925337607}
Linking options:
http://mi.mathnet.ru/eng/umn9629https://doi.org/10.4213/rm9629 http://mi.mathnet.ru/eng/umn/v69/i6/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. Boritchev, “Multidimensional potential Burgers turbulence”, Comm. Math. Phys., 342:2 (2016), 441–489
|
Number of views: |
This page: | 510 | Full text: | 135 | References: | 56 | First page: | 41 |
|