RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2015, Volume 70, Issue 6(426), Pages 3–62 (Mi umn9692)  

This article is cited in 11 scientific papers (total in 11 papers)

The anti-integrable limit

S. V. Bolotin, D. V. Treschev

Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: The anti-integrable limit is one of the convenient and relatively simple methods for the construction of chaotic hyperbolic invariant sets in Lagrangian, Hamiltonian, and other dynamical systems. This survey discusses the most natural context of the method, namely, discrete Lagrangian systems, and then presents examples and applications.
Bibliography: 75 titles.

Keywords: Lagrangian systems, Hamiltonian systems, chaos, hyperbolic sets, topological Markov chain, topological entropy.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.


DOI: https://doi.org/10.4213/rm9692

Full text: PDF file (1024 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2015, 70:6, 975–1030

Bibliographic databases:

UDC: 531.01
MSC: Primary 37D45; Secondary 37B10, 37B40
Received: 17.10.2015

Citation: S. V. Bolotin, D. V. Treschev, “The anti-integrable limit”, Uspekhi Mat. Nauk, 70:6(426) (2015), 3–62; Russian Math. Surveys, 70:6 (2015), 975–1030

Citation in format AMSBIB
\Bibitem{BolTre15}
\by S.~V.~Bolotin, D.~V.~Treschev
\paper The anti-integrable limit
\jour Uspekhi Mat. Nauk
\yr 2015
\vol 70
\issue 6(426)
\pages 3--62
\mathnet{http://mi.mathnet.ru/umn9692}
\crossref{https://doi.org/10.4213/rm9692}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3462714}
\zmath{https://zbmath.org/?q=an:06608780}
\elib{http://elibrary.ru/item.asp?id=25707778}
\transl
\jour Russian Math. Surveys
\yr 2015
\vol 70
\issue 6
\pages 975--1030
\crossref{https://doi.org/10.1070/RM2015v070n06ABEH004972}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000372362900001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962850097}


Linking options:
  • http://mi.mathnet.ru/eng/umn9692
  • https://doi.org/10.4213/rm9692
  • http://mi.mathnet.ru/eng/umn/v70/i6/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas”, Russian Math. Surveys, 71:2 (2016), 253–290  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. V. V. Kozlov, D. V. Treschev, “Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics”, Sb. Math., 207:10 (2016), 1435–1449  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. S. V. Bolotin, “Degenerate billiards”, Proc. Steklov Inst. Math., 295 (2016), 45–62  mathnet  crossref  crossref  mathscinet  isi  elib
    4. M. N. Davletshin, D. V. Treschev, “Arnold diffusion in a neighborhood of strong resonances”, Proc. Steklov Inst. Math., 295 (2016), 63–94  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Sergey V. Bolotin, “Degenerate Billiards in Celestial Mechanics”, Regul. Chaotic Dyn., 22:1 (2017), 27–53  mathnet  crossref  mathscinet
    6. S. V. Bolotin, V. V. Kozlov, “Topological approach to the generalized $n$-centre problem”, Russian Math. Surveys, 72:3 (2017), 451–478  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. S. V. Bolotin, V. V. Kozlov, “Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom”, Izv. Math., 81:4 (2017), 671–687  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. Alexey V. Ivanov, “Connecting Orbits near the Adiabatic Limit of Lagrangian Systems with Turning Points”, Regul. Chaotic Dyn., 22:5 (2017), 479–501  mathnet  crossref
    9. D. Treschev, “A locally integrable multi-dimensional billiard system”, Discrete Contin. Dyn. Syst., 37:10 (2017), 5271–5284  crossref  mathscinet  zmath  isi  scopus
    10. J. Féjoz, A. Knauf, R. Montgomery, “Lagrangian relations and linear point billiards”, Nonlinearity, 30:4 (2017), 1326–1355  crossref  mathscinet  zmath  isi  scopus
    11. S. V. Bolotin, “Jumps of energy near a separatrix in slow-fast Hamiltonian systems”, Russian Math. Surveys, 73:4 (2018), 725–727  mathnet  crossref  crossref  adsnasa  isi  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:656
    Full text:67
    References:45
    First page:76

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019