RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



УМН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


УМН, 2016, том 71, выпуск 2(428), страницы 81–120 (Mi umn9707)  

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

Полиномиальные законы сохранения для газа Лоренца и газа Больцмана–Гиббса

В. В. Козлов

Математический институт им. В.А. Стеклова Российской академии наук

Аннотация: Рассматривается задача об условиях существования полиномиальных по импульсам (скоростям) первых интегралов многомерных биллиардных систем, играющих важную роль в неравновесной статистической механике. Это газ Лоренца – частица в евклидовом пространстве с областями-рассеивателями (не обязательно выпуклыми) и газ Больцмана–Гиббса – набор маленьких одинаковых шариков в прямоугольном ящике, которые упруго сталкиваются между собой и со стенками ящика. Эргодические свойства таких систем частично изучены, некоторые проблемы еще ждут решения, а в ряде случаев (например, когда рассеиватели не выпуклые) эргодичности заведомо нет. В работе развит подход, позволяющий доказывать отсутствие нетривиальных полиномиальных первых интегралов с непрерывно дифференцируемыми коэффициентами. В интегрируемых задачах динамики известные первые интегралы являются, как правило, полиномами по импульсам (либо функциями от полиномов). Особый интерес представляет изучение многомерных биллиардов с некомпактным конфигурационным пространством, когда не приходится говорить об их эргодическом поведении. Обсуждается применение общих результатов об отсутствии нетривиальных полиномиальных интегралов к задачам статистической механики.
Библиография: 62 названия.

Ключевые слова: биллиард Биркгофа, газ Лоренца, газ Больцмана–Гиббса, полиномиальный интеграл, топологические препятствия к интегрируемости, упругое отражение, КАМ-теория.

Финансовая поддержка Номер гранта
Российский научный фонд 14-50-00005
Исследование выполнено за счет гранта Российского научного фонда (проект № 14-50-00005).


DOI: https://doi.org/10.4213/rm9707

Полный текст: PDF файл (783 kB)
Первая страница: PDF файл
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Russian Mathematical Surveys, 2016, 71:2, 253–290

Реферативные базы данных:

Тип публикации: Статья
УДК: 514.755+530.1:51+536
MSC: Primary 37D50, 70F35, 70H33; Secondary 70H08
Поступила в редакцию: 10.02.2016

Образец цитирования: В. В. Козлов, “Полиномиальные законы сохранения для газа Лоренца и газа Больцмана–Гиббса”, УМН, 71:2(428) (2016), 81–120; Russian Math. Surveys, 71:2 (2016), 253–290

Цитирование в формате AMSBIB
\RBibitem{Koz16}
\by В.~В.~Козлов
\paper Полиномиальные законы сохранения для газа Лоренца и газа Больцмана--Гиббса
\jour УМН
\yr 2016
\vol 71
\issue 2(428)
\pages 81--120
\mathnet{http://mi.mathnet.ru/umn9707}
\crossref{https://doi.org/10.4213/rm9707}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3507474}
\zmath{https://zbmath.org/?q=an:06619513}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016RuMaS..71..253K}
\elib{http://elibrary.ru/item.asp?id=25865519}
\transl
\jour Russian Math. Surveys
\yr 2016
\vol 71
\issue 2
\pages 253--290
\crossref{https://doi.org/10.1070/RM9707}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000380765700002}
\elib{http://elibrary.ru/item.asp?id=27118982}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979917773}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/umn9707
  • https://doi.org/10.4213/rm9707
  • http://mi.mathnet.ru/rus/umn/v71/i2/p81

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. В. В. Козлов, Д. В. Трещëв, “Топология конфигурационного пространства, сингулярности потенциала и полиномиальные интегралы уравнений динамики”, Матем. сб., 207:10 (2016), 80–95  mathnet  crossref  mathscinet  zmath  elib; V. V. Kozlov, D. V. Treschev, “Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics”, Sb. Math., 207:10 (2016), 1435–1449  crossref  mathscinet  zmath  isi  scopus
    2. С. В. Болотин, “Вырожденные бильярды”, Современные проблемы механики, Сборник статей, Тр. МИАН, 295, МАИК «Наука/Интерпериодика», М., 2016, 53–71  mathnet  crossref  mathscinet  elib; S. V. Bolotin, “Degenerate billiards”, Proc. Steklov Inst. Math., 295 (2016), 45–62  crossref  mathscinet  zmath  isi  scopus
    3. Ivan A. Bizyaev, Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “Integrability and Nonintegrability of Sub-Riemannian Geodesic Flows on Carnot Groups”, Regul. Chaotic Dyn., 21:6 (2016), 759–774  mathnet  crossref  mathscinet  zmath  scopus
    4. С. В. Болотин, В. В. Козлов, “Топология, сингулярности и интегрируемость в гамильтоновых системах с двумя степенями свободы”, Изв. РАН. Сер. матем., 81:4 (2017), 3–19  mathnet  crossref  mathscinet  zmath  elib; S. V. Bolotin, V. V. Kozlov, “Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom”, Izv. Math., 81:4 (2017), 671–687  crossref  mathscinet  zmath  isi  scopus
    5. D. Treschev, “A locally integrable multi-dimensional billiard system”, Discrete Contin. Dyn. Syst. Ser. A, 37:10 (2017), 5271–5284  mathnet  crossref  mathscinet  zmath  isi  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Просмотров:
    Эта страница:334
    Литература:60
    Первая стр.:59

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018