RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2016, Volume 71, Issue 6(432), Pages 157–158 (Mi umn9738)  

This article is cited in 7 scientific papers (total in 8 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

On manifolds defined by 4-colourings of simple 3-polytopes

V. M. Buchstabera, T. E. Panovbcd

a Steklov Mathematical Institute of Russian Academy of Sciences
b Moscow State University
c Institute for Theoretical and Experimental Physics, Moscow
d Institute for Information Transmission Problems of the Russian Academy of Sciences

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00537
16-51-55017-ГФЕН_a
This work was carried out with the support of the Russian Foundation for Basic Research (grant nos. 14-01-00537 and 16-51-55017-ГФЕН_a.).


DOI: https://doi.org/10.4213/rm9738

Full text: PDF file (359 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2016, 71:6, 1137–1139

Bibliographic databases:

MSC: Primary 57R91, 57M50; Secondary 05C15, 14M25, 52A55, 52B10
Presented: С. П. Новиков
Accepted: 20.09.2016

Citation: V. M. Buchstaber, T. E. Panov, “On manifolds defined by 4-colourings of simple 3-polytopes”, Uspekhi Mat. Nauk, 71:6(432) (2016), 157–158; Russian Math. Surveys, 71:6 (2016), 1137–1139

Citation in format AMSBIB
\Bibitem{BucPan16}
\by V.~M.~Buchstaber, T.~E.~Panov
\paper On manifolds defined by 4-colourings of simple 3-polytopes
\jour Uspekhi Mat. Nauk
\yr 2016
\vol 71
\issue 6(432)
\pages 157--158
\mathnet{http://mi.mathnet.ru/umn9738}
\crossref{https://doi.org/10.4213/rm9738}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3588942}
\zmath{https://zbmath.org/?q=an:06721074}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016RuMaS..71.1137B}
\elib{http://elibrary.ru/item.asp?id=27485030}
\transl
\jour Russian Math. Surveys
\yr 2016
\vol 71
\issue 6
\pages 1137--1139
\crossref{https://doi.org/10.1070/RM9738}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000398177400005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016067409}


Linking options:
  • http://mi.mathnet.ru/eng/umn9738
  • https://doi.org/10.4213/rm9738
  • http://mi.mathnet.ru/eng/umn/v71/i6/p157

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russian Math. Surveys, 72:2 (2017), 199–256  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. A. Yu. Vesnin, “Right-angled polyhedra and hyperbolic 3-manifolds”, Russian Math. Surveys, 72:2 (2017), 335–374  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. V. M. Buchstaber, N. Yu. Erokhovets, “Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes”, Izv. Math., 81:5 (2017), 901–972  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. V. M. Buchstaber, N. Yu. Erokhovets, “Fullerenes, polytopes and toric topology”, Combinatorial and toric homotopy, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 35, World Sci. Publ., Hackensack, NJ, 2018, 67–178  crossref  mathscinet  zmath  isi
    5. A. Yu. Vesnin, S. V. Matveev, E. A. Fominykh, “New aspects of complexity theory for 3-manifolds”, Russian Math. Surveys, 73:4 (2018), 615–660  mathnet  crossref  crossref  adsnasa  isi  elib
    6. D. A. Derevnin, A. D. Mednykh, “Mirror symmetries of hyperbolic tetrahedral manifolds”, Sib. elektron. matem. izv., 15 (2018), 1850–1856  mathnet  crossref
    7. A. A. Borisenko, A. Yu. Vesnin, N. M. Ivochkina, “On the 100th anniversary of the birth of Aleksei Vasil'evich Pogorelov”, Russian Math. Surveys, 74:6 (2019), 1135–1157  mathnet  crossref  crossref  adsnasa
    8. N. Yu. Erokhovets, “Three-Dimensional Right-Angled Polytopes of Finite Volume in the Lobachevsky Space: Combinatorics and Constructions”, Proc. Steklov Inst. Math., 305 (2019), 78–134  mathnet  crossref  crossref  isi  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:322
    Full text:27
    References:50
    First page:34

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020