RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2016, Volume 71, Issue 6(432), Pages 99–154 (Mi umn9743)  

This article is cited in 7 scientific papers (total in 7 papers)

Multidimensional Tauberian theorems for generalized functions

Yu. N. Drozhzhinov

Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: This is a brief survey of multidimensional Tauberian theorems for generalized functions. Included are theorems of Hardy–Littlewood type, Tauberian and Abelian comparison theorems of Keldysh type, theorems of Wiener type, and Tauberian theorems for generalized functions with values in Banach spaces.
Bibliography: 58 titles.

Keywords: generalized functions, quasi-asymptotics, Abelian theorems, Tauberian theorems, quasi-asymptotic boundedness, regularly varying functions, automodel functionals.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation under grant 14-50-00005.


DOI: https://doi.org/10.4213/rm9743

Full text: PDF file (923 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2016, 71:6, 1081–1134

Bibliographic databases:

Document Type: Article
UDC: 517.53
MSC: Primary 40E05; Secondary 46F05, 46F12
Received: 23.03.2016
Revised: 23.05.2016

Citation: Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions”, Uspekhi Mat. Nauk, 71:6(432) (2016), 99–154; Russian Math. Surveys, 71:6 (2016), 1081–1134

Citation in format AMSBIB
\Bibitem{Dro16}
\by Yu.~N.~Drozhzhinov
\paper Multidimensional Tauberian theorems for generalized functions
\jour Uspekhi Mat. Nauk
\yr 2016
\vol 71
\issue 6(432)
\pages 99--154
\mathnet{http://mi.mathnet.ru/umn9743}
\crossref{https://doi.org/10.4213/rm9743}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3588940}
\zmath{https://zbmath.org/?q=an:06721072}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016RuMaS..71.1081D}
\elib{http://elibrary.ru/item.asp?id=27485028}
\transl
\jour Russian Math. Surveys
\yr 2016
\vol 71
\issue 6
\pages 1081--1134
\crossref{https://doi.org/10.1070/RM9743}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000398177400003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015996322}


Linking options:
  • http://mi.mathnet.ru/eng/umn9743
  • https://doi.org/10.4213/rm9743
  • http://mi.mathnet.ru/eng/umn/v71/i6/p99

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. N. Drozhzhinov, “Asymptotically homogeneous generalized functions and some of their applications”, Proc. Steklov Inst. Math., 301 (2018), 65–81  mathnet  crossref  crossref  isi  elib  elib
    2. N. A. Gusev, “On the definitions of boundary values of generalized solutions to an elliptic-type equation”, Proc. Steklov Inst. Math., 301 (2018), 39–43  mathnet  crossref  crossref  isi  elib  elib
    3. I. V. Volovich, V. Zh. Sakbaev, “On quantum dynamics on $C^*$-algebras”, Proc. Steklov Inst. Math., 301 (2018), 25–38  mathnet  crossref  crossref  isi  elib  elib
    4. A. S. Trushechkin, “Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional”, Proc. Steklov Inst. Math., 301 (2018), 262–271  mathnet  crossref  crossref  isi  elib  elib
    5. V. V. Zharinov, “Analysis in differential algebras and modules”, Theoret. and Math. Phys., 196:1 (2018), 939–956  mathnet  crossref  crossref  adsnasa  isi  elib
    6. M. O. Katanaev, “Description of disclinations and dislocations by the Chern–Simons action for $\mathbb{SO}(3)$-connection”, Phys. Part. Nucl., 49:5 (2018), 890–893  mathnet  crossref  isi  scopus
    7. S. Pilipović, J. Vindas, “Tauberian class estimates for vector-valued distributions”, Sb. Math., 210:2 (2019), 272–296  mathnet  crossref  crossref  adsnasa  isi  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:202
    References:25
    First page:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019