Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2016, Volume 71, Issue 6(432), Pages 155–156 (Mi umn9752)  

This article is cited in 4 scientific papers (total in 4 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Dyadic analogues of Hilbert matrices

B. S. Kashin

Steklov Mathematical Institute of Russian Academy of Sciences

Keywords: Hilbert matrix, Rademacher functions, orthogonal series.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation under grant 14-50-00005.


DOI: https://doi.org/10.4213/rm9752

Full text: PDF file (351 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2016, 71:6, 1135–1136

Bibliographic databases:

MSC: Primary 15B99; Secondary 42C05
Presented: А. Г. Сергеев
Accepted: 01.11.2016

Citation: B. S. Kashin, “Dyadic analogues of Hilbert matrices”, Uspekhi Mat. Nauk, 71:6(432) (2016), 155–156; Russian Math. Surveys, 71:6 (2016), 1135–1136

Citation in format AMSBIB
\Bibitem{Kas16}
\by B.~S.~Kashin
\paper Dyadic analogues of Hilbert matrices
\jour Uspekhi Mat. Nauk
\yr 2016
\vol 71
\issue 6(432)
\pages 155--156
\mathnet{http://mi.mathnet.ru/umn9752}
\crossref{https://doi.org/10.4213/rm9752}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3588941}
\zmath{https://zbmath.org/?q=an:06721073}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016RuMaS..71.1135K}
\elib{https://elibrary.ru/item.asp?id=27485029}
\transl
\jour Russian Math. Surveys
\yr 2016
\vol 71
\issue 6
\pages 1135--1136
\crossref{https://doi.org/10.1070/RM9752}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000398177400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016071415}


Linking options:
  • http://mi.mathnet.ru/eng/umn9752
  • https://doi.org/10.4213/rm9752
  • http://mi.mathnet.ru/eng/umn/v71/i6/p155

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. M. Dyuzhev, “Estimate of the Norms of Matrices whose Entries are Constant in Binary Blocks”, Math. Notes, 104:5 (2018), 749–752  mathnet  crossref  crossref  mathscinet  isi  elib
    2. B. S. Kashin, Yu. V. Malykhin, K. S. Ryutin, “Kolmogorov width and approximate rank”, Proc. Steklov Inst. Math., 303 (2018), 140–153  mathnet  crossref  crossref  mathscinet  isi  elib
    3. E. M. Dyuzhev, “Ob otsenke norm matrits s proizvolnymi elementami, postoyannymi v dvoichnykh blokakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2020, no. 3, 46–48  mathnet
    4. A. P. Solodov, “On Orthogonal Systems with Extremely Large $L_2$-Norm of the Maximal Operator”, Math. Notes, 109:3 (2021), 459–472  mathnet  crossref  crossref  isi
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:487
    Full text:58
    References:58
    First page:71

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021