|
This article is cited in 10 scientific papers (total in 10 papers)
The theory of filtrations of subalgebras, standardness, and independence
A. M. Vershikabc a St. Petersburg Department of the Steklov Mathematical Institute
b St. Petersburg State University
c Institute for Information Transmission Problems
Abstract:
This survey is devoted to the combinatorial and metric theory of filtrations: decreasing sequences of $\sigma$-algebras in measure spaces or decreasing sequences of subalgebras of certain algebras. One of the key notions, that of standardness, plays the role of a generalization of the notion of the independence of a sequence of random variables. Questions are discussed on the possibility of classifying filtrations, on their invariants, and on various connections with problems in algebra, dynamics, and combinatorics.
Bibliography: 101 titles.
Keywords:
filtrations, $\sigma$-algebras, independence, standardness, graded graphs, central measures.
Funding Agency |
Grant Number |
Russian Science Foundation  |
14-11-00581 |
Partially supported by the Russian Science Foundation (grant no. 14-11-00581). |
DOI:
https://doi.org/10.4213/rm9763
Full text:
PDF file (1196 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 2017, 72:2, 257–333
Bibliographic databases:
UDC:
517.518
MSC: 05A05, 37A60, 37M99, 28A06, 60A10 Received: 24.01.2017 Revised: 15.02.2017
Citation:
A. M. Vershik, “The theory of filtrations of subalgebras, standardness, and independence”, Uspekhi Mat. Nauk, 72:2(434) (2017), 67–146; Russian Math. Surveys, 72:2 (2017), 257–333
Citation in format AMSBIB
\Bibitem{Ver17}
\by A.~M.~Vershik
\paper The theory of filtrations of subalgebras, standardness, and independence
\jour Uspekhi Mat. Nauk
\yr 2017
\vol 72
\issue 2(434)
\pages 67--146
\mathnet{http://mi.mathnet.ru/umn9763}
\crossref{https://doi.org/10.4213/rm9763}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3635438}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2017RuMaS..72..257V}
\elib{https://elibrary.ru/item.asp?id=28931454}
\transl
\jour Russian Math. Surveys
\yr 2017
\vol 72
\issue 2
\pages 257--333
\crossref{https://doi.org/10.1070/RM9763}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000406101400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85026667082}
Linking options:
http://mi.mathnet.ru/eng/umn9763https://doi.org/10.4213/rm9763 http://mi.mathnet.ru/eng/umn/v72/i2/p67
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russian Math. Surveys, 72:2 (2017), 199–256
-
A. M. Vershik, “Duality and free measures in vector spaces; spectral theory and the actions of non locally compact groups”, J. Math. Sci. (N. Y.), 238:4 (2019), 390–405
-
A. M. Vershik, A. V. Malyutin, “The Absolute of Finitely Generated Groups: II. The Laplacian and Degenerate Parts”, Funct. Anal. Appl., 52:3 (2018), 163–177
-
A. M. Vershik, P. B. Zatitskii, “Combinatorial Invariants of Metric Filtrations and Automorphisms; the Universal Adic Graph”, Funct. Anal. Appl., 52:4 (2018), 258–269
-
A. M. Vershik, A. V. Malyutin, “The absolute of finitely generated groups: I. Commutative (semi)groups”, Eur. J. Math., 4:4 (2018), 1476–1490
-
P. E. Naryshkin, “A remark on the isomorphism between the Bernoulli scheme and the Plancherel measure”, J. Math. Sci. (N. Y.), 240:5 (2019), 567–571
-
A. M. Vershik, P. B. Zatitskii, “On a universal Borel adic space”, J. Math. Sci. (N. Y.), 240:5 (2019), 515–524
-
A. M. Vershik, “Asimptotika razbieniya kuba na simpleksy Veilya i kodirovanie skhemy Bernulli”, Funkts. analiz i ego pril., 53:2 (2019), 11–31
-
A. M. Vershik, “The problem of combinatorial encoding of a continuous dynamics and the notion of transfer of paths in graphs”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. XXX, Zap. nauchn. sem. POMI, 481, POMI, SPb., 2019, 12–28
-
A. M. Vershik, “Kombinatornoe kodirovanie skhem Bernulli i asimptotika tablits Yunga”, Funkts. analiz i ego pril., 54:2 (2020), 3–24
|
Number of views: |
This page: | 532 | Full text: | 42 | References: | 49 | First page: | 43 |
|