|
This article is cited in 8 scientific papers (total in 8 papers)
On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials
A. I. Aptekareva, G. López Lagomasinob, A. Martínez-Finkelshteinc a Federal Research Centre Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
b Carlos III University of Madrid, Madrid, Spain
c Universidad de Almería, Almería, Spain
Abstract:
This survey considers multiple orthogonal polynomials with respect to Nikishin systems generated by a pair $(\sigma_1,\sigma_2)$ of measures\linebreak with unbounded supports ($\operatorname{supp}(\sigma_1) \subseteq \mathbb{R}_+$, $\operatorname{supp}(\sigma_2)\subset \mathbb{R}_-$) and with $\sigma_2$ discrete. A Nikishin-type equilibrium problem in the presence of an external field acting on $\mathbb{R}_+$ and a constraint on $\mathbb{R}_-$ is stated and solved. The solution is used for deriving the contracted zero distribution of the associated multiple orthogonal polynomials.
Bibliography: 56 titles.
Keywords:
Hermite–Padé approximants, multiple orthogonal polynomials, orthogonality with respect to a discrete measure, weak asymptotics, vector equilibrium problem, Nikishin systems.
DOI:
https://doi.org/10.4213/rm9769
Full text:
PDF file (1005 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 2017, 72:3, 389–449
Bibliographic databases:
UDC:
517.53
MSC: Primary 42C05; Secondary 31A99, 41A21 Received: 13.03.2017 Revised: 10.04.2017
Citation:
A. I. Aptekarev, G. López Lagomasino, A. Martínez-Finkelshtein, “On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials”, Uspekhi Mat. Nauk, 72:3(435) (2017), 3–64; Russian Math. Surveys, 72:3 (2017), 389–449
Citation in format AMSBIB
\Bibitem{AptLopMar17}
\by A.~I.~Aptekarev, G.~L\'opez Lagomasino, A.~Mart{\'\i}nez-Finkelshtein
\paper On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials
\jour Uspekhi Mat. Nauk
\yr 2017
\vol 72
\issue 3(435)
\pages 3--64
\mathnet{http://mi.mathnet.ru/umn9769}
\crossref{https://doi.org/10.4213/rm9769}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3662458}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2017RuMaS..72..389A}
\elib{https://elibrary.ru/item.asp?id=29833698}
\transl
\jour Russian Math. Surveys
\yr 2017
\vol 72
\issue 3
\pages 389--449
\crossref{https://doi.org/10.1070/RM9769}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000412068800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030642049}
Linking options:
http://mi.mathnet.ru/eng/umn9769https://doi.org/10.4213/rm9769 http://mi.mathnet.ru/eng/umn/v72/i3/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. G. Lysov, “Silnaya asimptotika approksimatsii Ermita–Pade dlya sistemy Nikishina s vesami Yakobi”, Preprinty IPM im. M. V. Keldysha, 2017, 085, 35 pp.
-
V. G. Lysov, “Asymptotics of Jacobi–Piñeiro Polynomials and Functions of the Second Kind”, Math. Notes, 103:3 (2018), 495–498
-
E. A. Rakhmanov, “Zero distribution for Angelesco Hermite–Padé polynomials”, Russian Math. Surveys, 73:3 (2018), 457–518
-
A. I. Aptekarev, E. D. Belega, “Asymptotic behaviour of the information entropy of hydrogen-like quantum systems”, Russian Math. Surveys, 73:5 (2018), 922–924
-
E. M. Chirka, “Potentials on a compact Riemann surface”, Proc. Steklov Inst. Math., 301 (2018), 272–303
-
A. I. Aptekarev, Yu. G. Rykov, “Variational principle for multidimensional conservation laws and pressureless media”, Russian Math. Surveys, 74:6 (2019), 1117–1119
-
A. I. Aptekarev, M. A. Lapik, V. G. Lysov, “Direct and inverse problems for vector logarithmic potentials with external fields”, Anal. Math. Phys., 9:3 (2019), 919–935
-
I. A. Aptekarev, S. A. Denisov, M. L. Yattselev, “Self-adjoint Jacobi matrices on trees and multiple orthogonal polynomials”, Trans. Amer. Math. Soc., 373:2 (2020), 875–917
|
Number of views: |
This page: | 361 | Full text: | 17 | References: | 34 | First page: | 28 |
|