RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2017, Volume 72, Issue 5(437), Pages 113–164 (Mi umn9792)  

Pencils of compatible metrics and integrable systems

O. I. Mokhov

Lomonosov Moscow State University

Abstract: This survey is devoted to the theory of pencils of compatible Riemannian and pseudo-Riemannian metrics, related non-linear integrable systems, and applications.
Bibliography: 82 titles.

Keywords: compatible metrics, compatible connections and curvatures, orthogonal curvilinear coordinate systems, Nijenhuis tensor, Riemann invariants, integrable systems, systems of hydrodynamic type.

Funding Agency Grant Number
Russian Science Foundation 16-11-10260
This work was supported by the Russian Science Foundation under grant 16-11-10260.


DOI: https://doi.org/10.4213/rm9792

Full text: PDF file (898 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2017, 72:5, 889–937

Bibliographic databases:

Document Type: Article
MSC: Primary 37K10, 37K25, 53B21, 53C21; Secondary 53B50
Received: 21.06.2017

Citation: O. I. Mokhov, “Pencils of compatible metrics and integrable systems”, Uspekhi Mat. Nauk, 72:5(437) (2017), 113–164; Russian Math. Surveys, 72:5 (2017), 889–937

Citation in format AMSBIB
\Bibitem{Mok17}
\by O.~I.~Mokhov
\paper Pencils of compatible metrics and integrable systems
\jour Uspekhi Mat. Nauk
\yr 2017
\vol 72
\issue 5(437)
\pages 113--164
\mathnet{http://mi.mathnet.ru/umn9792}
\crossref{https://doi.org/10.4213/rm9792}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3716514}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2017RuMaS..72..889M}
\elib{http://elibrary.ru/item.asp?id=30512323}
\transl
\jour Russian Math. Surveys
\yr 2017
\vol 72
\issue 5
\pages 889--937
\crossref{https://doi.org/10.1070/RM9792}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000422922900003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85041110591}


Linking options:
  • http://mi.mathnet.ru/eng/umn9792
  • https://doi.org/10.4213/rm9792
  • http://mi.mathnet.ru/eng/umn/v72/i5/p113

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:228
    References:19
    First page:39

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019