RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2018, Volume 73, Issue 4(442), Pages 53–102 (Mi umn9829)  

New aspects of complexity theory for 3-manifolds

A. Yu. Vesninab, S. V. Matveevcd, E. A. Fominykhcd

a Tomsk State University
b S. L. Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
c Chelyabinsk State University
d N. N. Krasovskii Institute of Mathematics and Mechanics of Russian Academy of Sciences

Abstract: Recent developments in the theory of complexity for three-dimensional manifolds are reviewed, including results and methods that emerged over the last decade. Infinite families of closed orientable manifolds and hyperbolic manifolds with totally geodesic boundary are presented, and the exact values of the Matveev complexity are given for them. New methods for computing complexity are described, based on calculation of the Turaev–Viro invariants and hyperbolic volumes of 3-manifolds.
Bibliography: 89 titles.

Keywords: 3-manifolds, Matveev complexity, tetrahedral complexity, triangulations, spines.

Funding Agency Grant Number
Russian Science Foundation 16-11-10291
This research was supported by the Russian Science Foundation under project no. 16-11-10291.


DOI: https://doi.org/10.4213/rm9829

Full text: PDF file (1168 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2018, 73:4, 615–660

Bibliographic databases:

UDC: 515.162
MSC: 57M27
Received: 09.04.2018

Citation: A. Yu. Vesnin, S. V. Matveev, E. A. Fominykh, “New aspects of complexity theory for 3-manifolds”, Uspekhi Mat. Nauk, 73:4(442) (2018), 53–102; Russian Math. Surveys, 73:4 (2018), 615–660

Citation in format AMSBIB
\Bibitem{VesMatFom18}
\by A.~Yu.~Vesnin, S.~V.~Matveev, E.~A.~Fominykh
\paper New aspects of complexity theory for 3-manifolds
\jour Uspekhi Mat. Nauk
\yr 2018
\vol 73
\issue 4(442)
\pages 53--102
\mathnet{http://mi.mathnet.ru/umn9829}
\crossref{https://doi.org/10.4213/rm9829}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2018RuMaS..73..615V}
\elib{http://elibrary.ru/item.asp?id=35276500}
\transl
\jour Russian Math. Surveys
\yr 2018
\vol 73
\issue 4
\pages 615--660
\crossref{https://doi.org/10.1070/RM9829}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000448388200002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055805397}


Linking options:
  • http://mi.mathnet.ru/eng/umn9829
  • https://doi.org/10.4213/rm9829
  • http://mi.mathnet.ru/eng/umn/v73/i4/p53

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:264
    References:33
    First page:41

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019